A Johnson SB continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
a,b : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | johnsonb.rvs(a,b,loc=0,scale=1,size=1) :
johnsonb.pdf(x,a,b,loc=0,scale=1) :
johnsonb.cdf(x,a,b,loc=0,scale=1) :
johnsonb.sf(x,a,b,loc=0,scale=1) :
johnsonb.ppf(q,a,b,loc=0,scale=1) :
johnsonb.isf(q,a,b,loc=0,scale=1) :
johnsonb.stats(a,b,loc=0,scale=1,moments=’mv’) :
johnsonb.entropy(a,b,loc=0,scale=1) :
johnsonb.fit(data,a,b,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = johnsonb(a,b,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = johnsonb.numargs
>>> [ a,b ] = [0.9,]*numargs
>>> rv = johnsonb(a,b)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = johnsonb.cdf(x,a,b)
>>> h=plt.semilogy(np.abs(x-johnsonb.ppf(prb,c))+1e-20)
Random number generation
>>> R = johnsonb.rvs(a,b,size=100)
Johnson SB distribution
johnsonsb.pdf(x,a,b) = b/(x*(1-x)) * phi(a + b*log(x/(1-x))) for 0 < x < 1 and a,b > 0, and phi is the normal pdf.