A generalized Pareto continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
c : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | genpareto.rvs(c,loc=0,scale=1,size=1) :
genpareto.pdf(x,c,loc=0,scale=1) :
genpareto.cdf(x,c,loc=0,scale=1) :
genpareto.sf(x,c,loc=0,scale=1) :
genpareto.ppf(q,c,loc=0,scale=1) :
genpareto.isf(q,c,loc=0,scale=1) :
genpareto.stats(c,loc=0,scale=1,moments=’mv’) :
genpareto.entropy(c,loc=0,scale=1) :
genpareto.fit(data,c,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = genpareto(c,loc=0,scale=1) :
|
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = genpareto.numargs
>>> [ c ] = [0.9,]*numargs
>>> rv = genpareto(c)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = genpareto.cdf(x,c)
>>> h=plt.semilogy(np.abs(x-genpareto.ppf(prb,c))+1e-20)
Random number generation
>>> R = genpareto.rvs(c,size=100)
Generalized Pareto distribution
genpareto.pdf(x,c) = (1+c*x)**(-1-1/c) for c != 0, and for x >= 0 for all c, and x < 1/abs(c) for c < 0.