A generalized exponential continuous random variable.
Continuous random variables are defined from a standard form and may require some shape parameters to complete its specification. Any optional keyword parameters can be passed to the methods of the RV object as given below:
Parameters: | x : array-like
q : array-like
a,b,c : array-like
loc : array-like, optional
scale : array-like, optional
size : int or tuple of ints, optional
moments : string, optional
|
---|---|
Methods: | genexpon.rvs(a,b,c,loc=0,scale=1,size=1) :
genexpon.pdf(x,a,b,c,loc=0,scale=1) :
genexpon.cdf(x,a,b,c,loc=0,scale=1) :
genexpon.sf(x,a,b,c,loc=0,scale=1) :
genexpon.ppf(q,a,b,c,loc=0,scale=1) :
genexpon.isf(q,a,b,c,loc=0,scale=1) :
genexpon.stats(a,b,c,loc=0,scale=1,moments=’mv’) :
genexpon.entropy(a,b,c,loc=0,scale=1) :
genexpon.fit(data,a,b,c,loc=0,scale=1) :
Alternatively, the object may be called (as a function) to fix the shape, : location, and scale parameters returning a “frozen” continuous RV object: : rv = genexpon(a,b,c,loc=0,scale=1) :
|
References
“The Exponential Distribution: Theory, Methods and Applications”, N. Balakrishnan, Asit P. Basu
Examples
>>> import matplotlib.pyplot as plt
>>> numargs = genexpon.numargs
>>> [ a,b,c ] = [0.9,]*numargs
>>> rv = genexpon(a,b,c)
Display frozen pdf
>>> x = np.linspace(0,np.minimum(rv.dist.b,3))
>>> h=plt.plot(x,rv.pdf(x))
Check accuracy of cdf and ppf
>>> prb = genexpon.cdf(x,a,b,c)
>>> h=plt.semilogy(np.abs(x-genexpon.ppf(prb,c))+1e-20)
Random number generation
>>> R = genexpon.rvs(a,b,c,size=100)
Generalized exponential distribution (Ryu 1993)
f(x,a,b,c) = (a+b*(1-exp(-c*x))) * exp(-a*x-b*x+b/c*(1-exp(-c*x))) for x >= 0, a,b,c > 0.
a, b, c are the first, second and third shape parameters.