Compute partial-fraction expansion of b(z) / a(z).
If M = len(b) and N = len(a)
b(z) b[0] + b[1] z**(-1) + ... + b[M-1] z**(-M+1)
a(z) a[0] + a[1] z**(-1) + ... + a[N-1] z**(-N+1)
r[0] r[-1]
If there are any repeated roots (closer than tol), then the partial fraction expansion has terms like
r[i] r[i+1] r[i+n-1]————– + —————— + ... + —————— (1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n
See also: invresz, poly, polyval, unique_roots