scipy.interpolate.splint(a, b, tck, full_output=0)

Evaluate the definite integral of a B-spline.


Given the knots and coefficients of a B-spline, evaluate the definite integral of the smoothing polynomial between two given points.


a, b – The end-points of the integration interval. tck – A length 3 sequence describing the given spline (See splev). full_output – Non-zero to return optional output.

Outputs: (integral, {wrk})

integral – The resulting integral. wrk – An array containing the integrals of the normalized B-splines defined

on the set of knots.
See also:

splprep, splrep, sproot, spalde, splev - evaluation, roots, integral bisplrep, bisplev - bivariate splines UnivariateSpline, BivariateSpline - an alternative wrapping

of the FITPACK functions
Gaffney P.W. : The calculation of indefinite integrals of b-splines
  1. Inst. Maths Applics 17 (1976) 37-41.
Dierckx P. : Curve and surface fitting with splines, Monographs on
Numerical Analysis, Oxford University Press, 1993.

Previous topic


Next topic


This Page

Quick search