scipy.stats.sigmaclip¶
- scipy.stats.sigmaclip(a, low=4.0, high=4.0)[source]¶
Iterative sigma-clipping of array elements.
The output array contains only those elements of the input array c that satisfy the conditions
mean(c) - std(c)*low < c < mean(c) + std(c)*high
Starting from the full sample, all elements outside the critical range are removed. The iteration continues with a new critical range until no elements are outside the range.
Parameters: a : array_like
Data array, will be raveled if not 1-D.
low : float, optional
Lower bound factor of sigma clipping. Default is 4.
high : float, optional
Upper bound factor of sigma clipping. Default is 4.
Returns: clipped : ndarray
Input array with clipped elements removed.
lower : float
Lower threshold value use for clipping.
upper : float
Upper threshold value use for clipping.
Examples
>>> from scipy.stats import sigmaclip >>> a = np.concatenate((np.linspace(9.5, 10.5, 31), ... np.linspace(0, 20, 5))) >>> fact = 1.5 >>> c, low, upp = sigmaclip(a, fact, fact) >>> c array([ 9.96666667, 10. , 10.03333333, 10. ]) >>> c.var(), c.std() (0.00055555555555555165, 0.023570226039551501) >>> low, c.mean() - fact*c.std(), c.min() (9.9646446609406727, 9.9646446609406727, 9.9666666666666668) >>> upp, c.mean() + fact*c.std(), c.max() (10.035355339059327, 10.035355339059327, 10.033333333333333)
>>> a = np.concatenate((np.linspace(9.5, 10.5, 11), ... np.linspace(-100, -50, 3))) >>> c, low, upp = sigmaclip(a, 1.8, 1.8) >>> (c == np.linspace(9.5, 10.5, 11)).all() True