scipy.special.chebyc¶
- scipy.special.chebyc(n, monic=False)[source]¶
Chebyshev polynomial of the first kind on \([-2, 2]\).
Defined as \(C_n(x) = 2T_n(x/2)\), where \(T_n\) is the nth Chebychev polynomial of the first kind.
Parameters: n : int
Degree of the polynomial.
monic : bool, optional
If True, scale the leading coefficient to be 1. Default is False.
Returns: C : orthopoly1d
Chebyshev polynomial of the first kind on \([-2, 2]\).
See also
- chebyt
- Chebyshev polynomial of the first kind.
Notes
The polynomials \(C_n(x)\) are orthogonal over \([-2, 2]\) with weight function \(1/\sqrt{1 - (x/2)^2}\).
References
[R390] Abramowitz and Stegun, “Handbook of Mathematical Functions” Section 22. National Bureau of Standards, 1972.