scipy.special.chebyt¶
- scipy.special.chebyt(n, monic=False)[source]¶
Chebyshev polynomial of the first kind.
Defined to be the solution of
\[(1 - x^2)\frac{d^2}{dx^2}T_n - x\frac{d}{dx}T_n + n^2T_n = 0;\]\(T_n\) is a polynomial of degree \(n\).
Parameters: n : int
Degree of the polynomial.
monic : bool, optional
If True, scale the leading coefficient to be 1. Default is False.
Returns: T : orthopoly1d
Chebyshev polynomial of the first kind.
See also
- chebyu
- Chebyshev polynomial of the second kind.
Notes
The polynomials \(T_n\) are orthogonal over \([-1, 1]\) with weight function \((1 - x^2)^{-1/2}\).