scipy.special.spherical_yn¶
- scipy.special.spherical_yn(n, z, derivative=False)[source]¶
Spherical Bessel function of the second kind or its derivative.
Defined as [R469],
\[y_n(z) = \sqrt{\frac{\pi}{2z}} Y_{n + 1/2}(z),\]where \(Y_n\) is the Bessel function of the second kind.
Parameters: n : int, array_like
Order of the Bessel function (n >= 0).
z : complex or float, array_like
Argument of the Bessel function.
derivative : bool, optional
If True, the value of the derivative (rather than the function itself) is returned.
Returns: yn : ndarray
Notes
For real arguments, the function is computed using the ascending recurrence [R470]. For complex arguments, the definitional relation to the cylindrical Bessel function of the second kind is used.
The derivative is computed using the relations [R471],
\[y_n' = y_{n-1} - \frac{n + 1}{2} y_n.\]\[y_0' = -y_1\]New in version 0.18.0.
References
[R469] (1, 2) http://dlmf.nist.gov/10.47.E4 [R470] (1, 2) http://dlmf.nist.gov/10.51.E1 [R471] (1, 2) http://dlmf.nist.gov/10.51.E2