scipy.special.spherical_jn¶
- scipy.special.spherical_jn(n, z, derivative=False)[source]¶
Spherical Bessel function of the first kind or its derivative.
Defined as [R464],
\[j_n(z) = \sqrt{\frac{\pi}{2z}} J_{n + 1/2}(z),\]where \(J_n\) is the Bessel function of the first kind.
Parameters: n : int, array_like
Order of the Bessel function (n >= 0).
z : complex or float, array_like
Argument of the Bessel function.
derivative : bool, optional
If True, the value of the derivative (rather than the function itself) is returned.
Returns: jn : ndarray
Notes
For real arguments greater than the order, the function is computed using the ascending recurrence [R465]. For small real or complex arguments, the definitional relation to the cylindrical Bessel function of the first kind is used.
The derivative is computed using the relations [R466],
\[j_n' = j_{n-1} - \frac{n + 1}{2} j_n.\]\[j_0' = -j_1\]New in version 0.18.0.
References
[R464] (1, 2) http://dlmf.nist.gov/10.47.E3 [R465] (1, 2) http://dlmf.nist.gov/10.51.E1 [R466] (1, 2) http://dlmf.nist.gov/10.51.E2