| all(a[, axis, out, keepdims]) |
Test whether all array elements along a given axis evaluate to True. |
| amax(a[, axis, out, keepdims]) |
Return the maximum of an array or maximum along an axis. |
| amin(a[, axis, out, keepdims]) |
Return the minimum of an array or minimum along an axis. |
| array(object[, dtype, copy, order, subok, ndmin]) |
Create an array. |
| asarray(a[, dtype, order]) |
Convert the input to an array. |
| aslinearoperator(A) |
Return A as a LinearOperator. |
| bicg(A, b[, x0, tol, maxiter, xtype, M, ...]) |
Use BIConjugate Gradient iteration to solve A x = b :Parameters: A : {sparse matrix, dense matrix, LinearOperator} The real or complex N-by-N matrix of the linear system It is required that the linear operator can produce Ax and A^T x. |
| bicgstab(A, b[, x0, tol, maxiter, xtype, M, ...]) |
Use BIConjugate Gradient STABilized iteration to solve A x = b :Parameters: A : {sparse matrix, dense matrix, LinearOperator} The real or complex N-by-N matrix of the linear system A must represent a hermitian, positive definite matrix b : {array, matrix} Right hand side of the linear system. |
| cg(A, b[, x0, tol, maxiter, xtype, M, callback]) |
Use Conjugate Gradient iteration to solve A x = b :Parameters: A : {sparse matrix, dense matrix, LinearOperator} The real or complex N-by-N matrix of the linear system A must represent a hermitian, positive definite matrix b : {array, matrix} Right hand side of the linear system. |
| cgs(A, b[, x0, tol, maxiter, xtype, M, callback]) |
Use Conjugate Gradient Squared iteration to solve A x = b :Parameters: A : {sparse matrix, dense matrix, LinearOperator} The real-valued N-by-N matrix of the linear system b : {array, matrix} Right hand side of the linear system. |
| dot(a, b[, out]) |
Dot product of two arrays. |
| eigs(A[, k, M, sigma, which, v0, ncv, ...]) |
Find k eigenvalues and eigenvectors of the square matrix A. |
| eigsh(A[, k, M, sigma, which, v0, ncv, ...]) |
Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A. |
| empty(shape[, dtype, order]) |
Return a new array of given shape and type, without initializing entries. |
| empty_like(a[, dtype, order, subok]) |
Return a new array with the same shape and type as a given array. |
| expm(A) |
Compute the matrix exponential using Pade approximation. |
| expm_multiply(A, B[, start, stop, num, endpoint]) |
Compute the action of the matrix exponential of A on B. |
| factorized(A) |
Return a fuction for solving a sparse linear system, with A pre-factorized. |
| fastCopyAndTranspose(a) |
|
| geterrobj() |
Return the current object that defines floating-point error handling. |
| gmres(A, b[, x0, tol, restart, maxiter, ...]) |
Use Generalized Minimal RESidual iteration to solve A x = b. |
| inv(A) |
Compute the inverse of a sparse matrix :Parameters: A : (M,M) ndarray or sparse matrix square matrix to be inverted :Returns: Ainv : (M,M) ndarray or sparse matrix inverse of A .. |
| issparse(x) |
|
| lgmres(A, b[, x0, tol, maxiter, M, ...]) |
Solve a matrix equation using the LGMRES algorithm. |
| lobpcg(A, X[, B, M, Y, tol, maxiter, ...]) |
Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG) LOBPCG is a preconditioned eigensolver for large symmetric positive definite (SPD) generalized eigenproblems. |
| lsmr(A, b[, damp, atol, btol, conlim, ...]) |
Iterative solver for least-squares problems. |
| lsqr(A, b[, damp, atol, btol, conlim, ...]) |
Find the least-squares solution to a large, sparse, linear system of equations. |
| minres(A, b[, x0, shift, tol, maxiter, ...]) |
Use MINimum RESidual iteration to solve Ax=b MINRES minimizes norm(A*x - b) for a real symmetric matrix A. |
| norm(x[, ord]) |
Norm of a sparse matrix This function is able to return one of seven different matrix norms, depending on the value of the ord parameter. |
| onenormest(A[, t, itmax, compute_v, compute_w]) |
Compute a lower bound of the 1-norm of a sparse matrix. |
| product(a[, axis, dtype, out, keepdims]) |
Return the product of array elements over a given axis. |
| qmr(A, b[, x0, tol, maxiter, xtype, M1, M2, ...]) |
Use Quasi-Minimal Residual iteration to solve A x = b :Parameters: A : {sparse matrix, dense matrix, LinearOperator} The real-valued N-by-N matrix of the linear system. |
| ravel(a[, order]) |
Return a contiguous flattened array. |
| rollaxis(a, axis[, start]) |
Roll the specified axis backwards, until it lies in a given position. |
| size(a[, axis]) |
Return the number of elements along a given axis. |
| spilu(A[, drop_tol, fill_factor, drop_rule, ...]) |
Compute an incomplete LU decomposition for a sparse, square matrix. |
| splu(A[, permc_spec, diag_pivot_thresh, ...]) |
Compute the LU decomposition of a sparse, square matrix. |
| spsolve(A, b[, permc_spec, use_umfpack]) |
Solve the sparse linear system Ax=b, where b may be a vector or a matrix. |
| sum(a[, axis, dtype, out, keepdims]) |
Sum of array elements over a given axis. |
| svds(A[, k, ncv, tol, which, v0, maxiter, ...]) |
Compute the largest k singular values/vectors for a sparse matrix. |
| transpose(a[, axes]) |
Permute the dimensions of an array. |
| use_solver(**kwargs) |
Valid keyword arguments with defaults (other ignored):: useUmfpack = True assumeSortedIndices = False The default sparse solver is umfpack when available. |
| zeros(shape[, dtype, order]) |
Return a new array of given shape and type, filled with zeros. |