scipy.interpolate.splint¶
- scipy.interpolate.splint(a, b, tck, full_output=0)[source]¶
Evaluate the definite integral of a B-spline.
Given the knots and coefficients of a B-spline, evaluate the definite integral of the smoothing polynomial between two given points.
Parameters: a, b : float
The end-points of the integration interval.
tck : tuple
A tuple (t,c,k) containing the vector of knots, the B-spline coefficients, and the degree of the spline (see splev).
full_output : int, optional
Non-zero to return optional output.
Returns: integral : float
The resulting integral.
wrk : ndarray
An array containing the integrals of the normalized B-splines defined on the set of knots.
See also
splprep, splrep, sproot, spalde, splev, bisplrep, bisplev, UnivariateSpline, BivariateSpline
Notes
splint silently assumes that the spline function is zero outside the data interval (a, b).
References
[R53] P.W. Gaffney, The calculation of indefinite integrals of b-splines”, J. Inst. Maths Applics, 17, p.37-41, 1976. [R54] P. Dierckx, “Curve and surface fitting with splines”, Monographs on Numerical Analysis, Oxford University Press, 1993.