This is documentation for an old release of SciPy (version 0.13.0). Read this page Search for this page in the documentation of the latest stable release (version 1.15.0).
Abstract linear operators
LinearOperator(shape, matvec[, rmatvec, ...]) |
Common interface for performing matrix vector products |
aslinearoperator(A) |
Return A as a LinearOperator. |
Matrix Operations
inv(A) |
Compute the inverse of a sparse matrix .. |
expm(A) |
Compute the matrix exponential using Pade approximation. |
expm_multiply(A, B[, start, stop, num, endpoint]) |
Compute the action of the matrix exponential of A on B. |
Matrix norms
onenormest(A[, t, itmax, compute_v, compute_w]) |
Compute a lower bound of the 1-norm of a sparse matrix. |
Solving linear problems
Direct methods for linear equation systems:
spsolve(A, b[, permc_spec, use_umfpack]) |
Solve the sparse linear system Ax=b, where b may be a vector or a matrix. |
factorized(A) |
Return a fuction for solving a sparse linear system, with A pre-factorized. |
Iterative methods for linear equation systems:
bicg(A, b[, x0, tol, maxiter, xtype, M, ...]) |
Use BIConjugate Gradient iteration to solve A x = b |
bicgstab(A, b[, x0, tol, maxiter, xtype, M, ...]) |
Use BIConjugate Gradient STABilized iteration to solve A x = b |
cg(A, b[, x0, tol, maxiter, xtype, M, callback]) |
Use Conjugate Gradient iteration to solve A x = b |
cgs(A, b[, x0, tol, maxiter, xtype, M, callback]) |
Use Conjugate Gradient Squared iteration to solve A x = b |
gmres(A, b[, x0, tol, restart, maxiter, ...]) |
Use Generalized Minimal RESidual iteration to solve A x = b. |
lgmres(A, b[, x0, tol, maxiter, M, ...]) |
Solve a matrix equation using the LGMRES algorithm. |
minres(A, b[, x0, shift, tol, maxiter, ...]) |
Use MINimum RESidual iteration to solve Ax=b |
qmr(A, b[, x0, tol, maxiter, xtype, M1, M2, ...]) |
Use Quasi-Minimal Residual iteration to solve A x = b |
Iterative methods for least-squares problems:
lsqr(A, b[, damp, atol, btol, conlim, ...]) |
Find the least-squares solution to a large, sparse, linear system of equations. |
lsmr(A, b[, damp, atol, btol, conlim, ...]) |
Iterative solver for least-squares problems. |
Matrix factorizations
Eigenvalue problems:
eigs(A[, k, M, sigma, which, v0, ncv, ...]) |
Find k eigenvalues and eigenvectors of the square matrix A. |
eigsh(A[, k, M, sigma, which, v0, ncv, ...]) |
Find k eigenvalues and eigenvectors of the real symmetric square matrix |
lobpcg(A, X[, B, M, Y, tol, maxiter, ...]) |
Solve symmetric partial eigenproblems with optional preconditioning |
Singular values problems:
svds(A[, k, ncv, tol, which, v0, maxiter, ...]) |
Compute the largest k singular values/vectors for a sparse matrix. |
Complete or incomplete LU factorizations
splu(A[, permc_spec, diag_pivot_thresh, ...]) |
Compute the LU decomposition of a sparse, square matrix. |
spilu(A[, drop_tol, fill_factor, drop_rule, ...]) |
Compute an incomplete LU decomposition for a sparse, square matrix. |