scipy.sparse.linalg.lobpcg¶
- scipy.sparse.linalg.lobpcg(A, X, B=None, M=None, Y=None, tol=None, maxiter=20, largest=True, verbosityLevel=0, retLambdaHistory=False, retResidualNormsHistory=False)[source]¶
Solve symmetric partial eigenproblems with optional preconditioning
This function implements the Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG).
Parameters : A : {sparse matrix, dense matrix, LinearOperator}
The symmetric linear operator of the problem, usually a sparse matrix. Often called the “stiffness matrix”.
X : array_like
Initial approximation to the k eigenvectors. If A has shape=(n,n) then X should have shape shape=(n,k).
B : {dense matrix, sparse matrix, LinearOperator}, optional
the right hand side operator in a generalized eigenproblem. by default, B = Identity often called the “mass matrix”
M : {dense matrix, sparse matrix, LinearOperator}, optional
preconditioner to A; by default M = Identity M should approximate the inverse of A
Y : array_like, optional
n-by-sizeY matrix of constraints, sizeY < n The iterations will be performed in the B-orthogonal complement of the column-space of Y. Y must be full rank.
Returns : w : array
Array of k eigenvalues
v : array
An array of k eigenvectors. V has the same shape as X.
Other Parameters: tol : scalar, optional
Solver tolerance (stopping criterion) by default: tol=n*sqrt(eps)
maxiter : integer, optional
maximum number of iterations by default: maxiter=min(n,20)
largest : boolean, optional
when True, solve for the largest eigenvalues, otherwise the smallest
verbosityLevel : integer, optional
controls solver output. default: verbosityLevel = 0.
retLambdaHistory : boolean, optional
whether to return eigenvalue history
retResidualNormsHistory : boolean, optional
whether to return history of residual norms
Notes
If both retLambdaHistory and retResidualNormsHistory are True, the return tuple has the following format (lambda, V, lambda history, residual norms history)