This is documentation for an old release of SciPy (version 0.12.0). Read this page in the documentation of the latest stable release (version 1.15.1).
This package contains various functions for multi-dimensional image processing.
convolve(input, weights[, output, mode, ...]) | Multidimensional convolution. |
convolve1d(input, weights[, axis, output, ...]) | Calculate a one-dimensional convolution along the given axis. |
correlate(input, weights[, output, mode, ...]) | Multi-dimensional correlation. |
correlate1d(input, weights[, axis, output, ...]) | Calculate a one-dimensional correlation along the given axis. |
gaussian_filter(input, sigma[, order, ...]) | Multidimensional Gaussian filter. |
gaussian_filter1d(input, sigma[, axis, ...]) | One-dimensional Gaussian filter. |
gaussian_gradient_magnitude(input, sigma[, ...]) | Multidimensional gradient magnitude using Gaussian derivatives. |
gaussian_laplace(input, sigma[, output, ...]) | Multidimensional Laplace filter using gaussian second derivatives. |
generic_filter(input, function[, size, ...]) | Calculates a multi-dimensional filter using the given function. |
generic_filter1d(input, function, filter_size) | Calculate a one-dimensional filter along the given axis. |
generic_gradient_magnitude(input, derivative) | Gradient magnitude using a provided gradient function. |
generic_laplace(input, derivative2[, ...]) | N-dimensional Laplace filter using a provided second derivative function |
laplace(input[, output, mode, cval]) | N-dimensional Laplace filter based on approximate second derivatives. |
maximum_filter(input[, size, footprint, ...]) | Calculates a multi-dimensional maximum filter. |
maximum_filter1d(input, size[, axis, ...]) | Calculate a one-dimensional maximum filter along the given axis. |
median_filter(input[, size, footprint, ...]) | Calculates a multidimensional median filter. |
minimum_filter(input[, size, footprint, ...]) | Calculates a multi-dimensional minimum filter. |
minimum_filter1d(input, size[, axis, ...]) | Calculate a one-dimensional minimum filter along the given axis. |
percentile_filter(input, percentile[, size, ...]) | Calculates a multi-dimensional percentile filter. |
prewitt(input[, axis, output, mode, cval]) | Calculate a Prewitt filter. |
rank_filter(input, rank[, size, footprint, ...]) | Calculates a multi-dimensional rank filter. |
sobel(input[, axis, output, mode, cval]) | Calculate a Sobel filter. |
uniform_filter(input[, size, output, mode, ...]) | Multi-dimensional uniform filter. |
uniform_filter1d(input, size[, axis, ...]) | Calculate a one-dimensional uniform filter along the given axis. |
fourier_ellipsoid(input, size[, n, axis, output]) | Multi-dimensional ellipsoid fourier filter. |
fourier_gaussian(input, sigma[, n, axis, output]) | Multi-dimensional Gaussian fourier filter. |
fourier_shift(input, shift[, n, axis, output]) | Multi-dimensional fourier shift filter. |
fourier_uniform(input, size[, n, axis, output]) | Multi-dimensional uniform fourier filter. |
affine_transform(input, matrix[, offset, ...]) | Apply an affine transformation. |
geometric_transform(input, mapping[, ...]) | Apply an arbritrary geometric transform. |
map_coordinates(input, coordinates[, ...]) | Map the input array to new coordinates by interpolation. |
rotate(input, angle[, axes, reshape, ...]) | Rotate an array. |
shift(input, shift[, output, order, mode, ...]) | Shift an array. |
spline_filter(input[, order, output]) | Multi-dimensional spline filter. |
spline_filter1d(input[, order, axis, output]) | Calculates a one-dimensional spline filter along the given axis. |
zoom(input, zoom[, output, order, mode, ...]) | Zoom an array. |
center_of_mass(input[, labels, index]) | Calculate the center of mass of the values of an array at labels. |
extrema(input[, labels, index]) | Calculate the minimums and maximums of the values of an array at labels, along with their positions. |
find_objects(input[, max_label]) | Find objects in a labeled array. |
histogram(input, min, max, bins[, labels, index]) | Calculate the histogram of the values of an array, optionally at labels. |
label(input[, structure, output]) | Label features in an array. |
maximum(input[, labels, index]) | Calculate the maximum of the values of an array over labeled regions. |
maximum_position(input[, labels, index]) | Find the positions of the maximums of the values of an array at labels. |
mean(input[, labels, index]) | Calculate the mean of the values of an array at labels. |
minimum(input[, labels, index]) | Calculate the minimum of the values of an array over labeled regions. |
minimum_position(input[, labels, index]) | Find the positions of the minimums of the values of an array at labels. |
standard_deviation(input[, labels, index]) | Calculate the standard deviation of the values of an n-D image array, |
sum(input[, labels, index]) | Calculate the sum of the values of the array. |
variance(input[, labels, index]) | Calculate the variance of the values of an n-D image array, optionally at |
watershed_ift(input, markers[, structure, ...]) | Apply watershed from markers using a iterative forest transform algorithm. |
binary_closing(input[, structure, ...]) | Multi-dimensional binary closing with the given structuring element. |
binary_dilation(input[, structure, ...]) | Multi-dimensional binary dilation with the given structuring element. |
binary_erosion(input[, structure, ...]) | Multi-dimensional binary erosion with a given structuring element. |
binary_fill_holes(input[, structure, ...]) | Fill the holes in binary objects. |
binary_hit_or_miss(input[, structure1, ...]) | Multi-dimensional binary hit-or-miss transform. |
binary_opening(input[, structure, ...]) | Multi-dimensional binary opening with the given structuring element. |
binary_propagation(input[, structure, mask, ...]) | Multi-dimensional binary propagation with the given structuring element. |
black_tophat(input[, size, footprint, ...]) | Multi-dimensional black tophat filter. |
distance_transform_bf(input[, metric, ...]) | Distance transform function by a brute force algorithm. |
distance_transform_cdt(input[, metric, ...]) | Distance transform for chamfer type of transforms. |
distance_transform_edt(input[, sampling, ...]) | Exact euclidean distance transform. |
generate_binary_structure(rank, connectivity) | Generate a binary structure for binary morphological operations. |
grey_closing(input[, size, footprint, ...]) | Multi-dimensional greyscale closing. |
grey_dilation(input[, size, footprint, ...]) | Calculate a greyscale dilation, using either a structuring element, or a footprint corresponding to a flat structuring element. |
grey_erosion(input[, size, footprint, ...]) | Calculate a greyscale erosion, using either a structuring element, or a footprint corresponding to a flat structuring element. |
grey_opening(input[, size, footprint, ...]) | Multi-dimensional greyscale opening. |
iterate_structure(structure, iterations[, ...]) | Iterate a structure by dilating it with itself. |
morphological_gradient(input[, size, ...]) | Multi-dimensional morphological gradient. |
morphological_laplace(input[, size, ...]) | Multi-dimensional morphological laplace. |
white_tophat(input[, size, footprint, ...]) | Multi-dimensional white tophat filter. |