Multidimensional convolution.
The array is convolved with the given kernel.
Parameters : | input : array_like
weights : array_like
output : ndarray, optional
mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional
cval : scalar, optional
origin : array_like, optional
|
---|---|
Returns : | result : ndarray
|
See also
Notes
Each value in result is , where W is the weights kernel, j is the n-D spatial index over , I is the input and k is the coordinate of the center of W, specified by origin in the input parameters.
Examples
Perhaps the simplest case to understand is mode='constant', cval=0.0, because in this case borders (i.e. where the weights kernel, centered on any one value, extends beyond an edge of input.
>>> a = np.array([[1, 2, 0, 0],
.... [5, 3, 0, 4],
.... [0, 0, 0, 7],
.... [9, 3, 0, 0]])
>>> k = np.array([[1,1,1],[1,1,0],[1,0,0]])
>>> from scipy import ndimage
>>> ndimage.convolve(a, k, mode='constant', cval=0.0)
array([[11, 10, 7, 4],
[10, 3, 11, 11],
[15, 12, 14, 7],
[12, 3, 7, 0]])
Setting cval=1.0 is equivalent to padding the outer edge of input with 1.0’s (and then extracting only the original region of the result).
>>> ndimage.convolve(a, k, mode='constant', cval=1.0)
array([[13, 11, 8, 7],
[11, 3, 11, 14],
[16, 12, 14, 10],
[15, 6, 10, 5]])
With mode='reflect' (the default), outer values are reflected at the edge of input to fill in missing values.
>>> b = np.array([[2, 0, 0],
[1, 0, 0],
[0, 0, 0]])
>>> k = np.array([[0,1,0],[0,1,0],[0,1,0]])
>>> ndimage.convolve(b, k, mode='reflect')
array([[5, 0, 0],
[3, 0, 0],
[1, 0, 0]])
This includes diagonally at the corners.
>>> k = np.array([[1,0,0],[0,1,0],[0,0,1]])
>>> ndimage.convolve(b, k)
array([[4, 2, 0],
[3, 2, 0],
[1, 1, 0]])
With mode='nearest', the single nearest value in to an edge in input is repeated as many times as needed to match the overlapping weights.
>>> c = np.array([[2, 0, 1],
[1, 0, 0],
[0, 0, 0]])
>>> k = np.array([[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0]])
>>> ndimage.convolve(c, k, mode='nearest')
array([[7, 0, 3],
[5, 0, 2],
[3, 0, 1]])