This is documentation for an old release of SciPy (version 0.12.0). Read this page in the documentation of the latest stable release (version 1.15.1).
Multidimensional convolution.
The array is convolved with the given kernel.
Parameters : | input : array_like
weights : array_like
output : ndarray, optional
mode : {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional
cval : scalar, optional
origin : array_like, optional
|
---|---|
Returns : | result : ndarray
|
See also
Notes
Each value in result is , where
W is the weights kernel,
j is the n-D spatial index over
,
I is the input and k is the coordinate of the center of
W, specified by origin in the input parameters.
Examples
Perhaps the simplest case to understand is mode='constant', cval=0.0, because in this case borders (i.e. where the weights kernel, centered on any one value, extends beyond an edge of input.
>>> a = np.array([[1, 2, 0, 0],
.... [5, 3, 0, 4],
.... [0, 0, 0, 7],
.... [9, 3, 0, 0]])
>>> k = np.array([[1,1,1],[1,1,0],[1,0,0]])
>>> from scipy import ndimage
>>> ndimage.convolve(a, k, mode='constant', cval=0.0)
array([[11, 10, 7, 4],
[10, 3, 11, 11],
[15, 12, 14, 7],
[12, 3, 7, 0]])
Setting cval=1.0 is equivalent to padding the outer edge of input with 1.0’s (and then extracting only the original region of the result).
>>> ndimage.convolve(a, k, mode='constant', cval=1.0)
array([[13, 11, 8, 7],
[11, 3, 11, 14],
[16, 12, 14, 10],
[15, 6, 10, 5]])
With mode='reflect' (the default), outer values are reflected at the edge of input to fill in missing values.
>>> b = np.array([[2, 0, 0],
[1, 0, 0],
[0, 0, 0]])
>>> k = np.array([[0,1,0],[0,1,0],[0,1,0]])
>>> ndimage.convolve(b, k, mode='reflect')
array([[5, 0, 0],
[3, 0, 0],
[1, 0, 0]])
This includes diagonally at the corners.
>>> k = np.array([[1,0,0],[0,1,0],[0,0,1]])
>>> ndimage.convolve(b, k)
array([[4, 2, 0],
[3, 2, 0],
[1, 1, 0]])
With mode='nearest', the single nearest value in to an edge in input is repeated as many times as needed to match the overlapping weights.
>>> c = np.array([[2, 0, 1],
[1, 0, 0],
[0, 0, 0]])
>>> k = np.array([[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0],
[0, 1, 0]])
>>> ndimage.convolve(c, k, mode='nearest')
array([[7, 0, 3],
[5, 0, 2],
[3, 0, 1]])