Compute frequency response of analog filter.
Given the numerator b and denominator a of a filter, compute its frequency response:
b[0]*(jw)**(nb-1) + b[1]*(jw)**(nb-2) + ... + b[nb-1]
H(w) = -------------------------------------------------------
a[0]*(jw)**(na-1) + a[1]*(jw)**(na-2) + ... + a[na-1]
Parameters : | b : ndarray
a : ndarray
worN : {None, int}, optional
plot : callable
|
---|---|
Returns : | w : ndarray
h : ndarray
|
See also
Notes
Using Matplotlib’s “plot” function as the callable for plot produces unexpected results, this plots the real part of the complex transfer function, not the magnitude.
Examples
>>> from scipy.signal import freqs, iirfilter
>>> b, a = iirfilter(4, [1, 10], 1, 60, analog=True, ftype='cheby1')
>>> w, h = freqs(b, a, worN=np.logspace(-1, 2, 1000))
>>> import matplotlib.pyplot as plt
>>> plt.semilogx(w, abs(h))
>>> plt.xlabel('Frequency')
>>> plt.ylabel('Amplitude response')
>>> plt.grid()
>>> plt.show()