This is documentation for an old release of SciPy (version 0.12.0). Read this page Search for this page in the documentation of the latest stable release (version 1.15.1).
scipy.optimize.golden
-
scipy.optimize.golden(func, args=(), brack=None, tol=1.4901161193847656e-08, full_output=0)[source]
Return the minimum of a function of one variable.
Given a function of one variable and a possible bracketing interval,
return the minimum of the function isolated to a fractional precision of
tol.
Parameters : | func : callable func(x,*args)
Objective function to minimize.
args : tuple
Additional arguments (if present), passed to func.
brack : tuple
Triple (a,b,c), where (a<b<c) and func(b) <
func(a),func(c). If bracket consists of two numbers (a,
c), then they are assumed to be a starting interval for a
downhill bracket search (see bracket); it doesn’t always
mean that obtained solution will satisfy a<=x<=c.
tol : float
x tolerance stop criterion
full_output : bool
If True, return optional outputs.
|
See also
- minimize_scalar
- Interface to minimization algorithms for scalar univariate functions. See the ‘Golden’ method in particular.
Notes
Uses analog of bisection method to decrease the bracketed
interval.