This is documentation for an old release of SciPy (version 0.12.0). Read this page Search for this page in the documentation of the latest stable release (version 1.15.1).
scipy.optimize.brent
-
scipy.optimize.brent(func, args=(), brack=None, tol=1.48e-08, full_output=0, maxiter=500)[source]
Given a function of one-variable and a possible bracketing interval,
return the minimum of the function isolated to a fractional precision of
tol.
Parameters : | func : callable f(x,*args)
args :
Additional arguments (if present).
brack : tuple
Triple (a,b,c) where (a<b<c) and func(b) <
func(a),func(c). If bracket consists of two numbers (a,c)
then they are assumed to be a starting interval for a
downhill bracket search (see bracket); it doesn’t always
mean that the obtained solution will satisfy a<=x<=c.
tol : float
Stop if between iteration change is less than tol.
full_output : bool
If True, return all output args (xmin, fval, iter,
funcalls).
maxiter : int
Maximum number of iterations in solution.
|
Returns : | xmin : ndarray
fval : float
iter : int
funcalls : int
Number of objective function evaluations made.
|
See also
- minimize_scalar
- Interface to minimization algorithms for scalar univariate functions. See the ‘Brent’ method in particular.
Notes
Uses inverse parabolic interpolation when possible to speed up
convergence of golden section method.