Compute QR decomposition of a matrix.
Calculate the decomposition A = Q R where Q is unitary/orthogonal and R upper triangular.
Parameters : | a : (M, N) array_like
overwrite_a : bool, optional
lwork : int, optional
mode : {‘full’, ‘r’, ‘economic’, ‘raw’}, optional
pivoting : bool, optional
check_finite : boolean, optional
|
---|---|
Returns : | Q : float or complex ndarray
R : float or complex ndarray
P : int ndarray
|
Raises : | LinAlgError :
|
Notes
This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, zungqr, dgeqp3, and zgeqp3.
If mode=economic, the shapes of Q and R are (M, K) and (K, N) instead of (M,M) and (M,N), with K=min(M,N).
Examples
>>> from scipy import random, linalg, dot, diag, all, allclose
>>> a = random.randn(9, 6)
>>> q, r = linalg.qr(a)
>>> allclose(a, np.dot(q, r))
True
>>> q.shape, r.shape
((9, 9), (9, 6))
>>> r2 = linalg.qr(a, mode='r')
>>> allclose(r, r2)
True
>>> q3, r3 = linalg.qr(a, mode='economic')
>>> q3.shape, r3.shape
((9, 6), (6, 6))
>>> q4, r4, p4 = linalg.qr(a, pivoting=True)
>>> d = abs(diag(r4))
>>> all(d[1:] <= d[:-1])
True
>>> allclose(a[:, p4], dot(q4, r4))
True
>>> q4.shape, r4.shape, p4.shape
((9, 9), (9, 6), (6,))
>>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True)
>>> q5.shape, r5.shape, p5.shape
((9, 6), (6, 6), (6,))