minimize(fun, x0[, args, method, jac, hess, ...]) | Minimization of scalar function of one or more variables. |
fmin(func, x0[, args, xtol, ftol, maxiter, ...]) | Minimize a function using the downhill simplex algorithm. |
fmin_powell(func, x0[, args, xtol, ftol, ...]) | Minimize a function using modified Powell’s method. This method |
fmin_cg(f, x0[, fprime, args, gtol, norm, ...]) | Minimize a function using a nonlinear conjugate gradient algorithm. |
fmin_bfgs(f, x0[, fprime, args, gtol, norm, ...]) | Minimize a function using the BFGS algorithm. |
fmin_ncg(f, x0, fprime[, fhess_p, fhess, ...]) | Unconstrained minimization of a function using the Newton-CG method. |
leastsq(func, x0[, args, Dfun, full_output, ...]) | Minimize the sum of squares of a set of equations. |
fmin_l_bfgs_b(func, x0[, fprime, args, ...]) | Minimize a function func using the L-BFGS-B algorithm. |
fmin_tnc(func, x0[, fprime, args, ...]) | Minimize a function with variables subject to bounds, using |
fmin_cobyla(func, x0, cons[, args, ...]) | Minimize a function using the Constrained Optimization BY Linear |
fmin_slsqp(func, x0[, eqcons, f_eqcons, ...]) | Minimize a function using Sequential Least SQuares Programming |
nnls(A, b) | Solve argmin_x || Ax - b ||_2 for x>=0. This is a wrapper |
anneal(func, x0[, args, schedule, ...]) | Minimize a function using simulated annealing. |
brute(func, ranges[, args, Ns, full_output, ...]) | Minimize a function over a given range by brute force. |
minimize_scalar(fun[, bracket, bounds, ...]) | Minimization of scalar function of one variable. |
fminbound(func, x1, x2[, args, xtol, ...]) | Bounded minimization for scalar functions. |
brent(func[, args, brack, tol, full_output, ...]) | Given a function of one-variable and a possible bracketing interval, return the minimum of the function isolated to a fractional precision of tol. |
golden(func[, args, brack, tol, full_output]) | Given a function of one-variable and a possible bracketing interval, return the minimum of the function isolated to a fractional precision of tol. |
bracket(func[, xa, xb, args, grow_limit, ...]) | Bracket the minimum of the function. |
rosen(x) | The Rosenbrock function. |
rosen_der(x) | The derivative (i.e. |
rosen_hess(x) | The Hessian matrix of the Rosenbrock function. |
rosen_hess_prod(x, p) | Product of the Hessian matrix of the Rosenbrock function with a vector. |
curve_fit(f, xdata, ydata[, p0, sigma]) | Use non-linear least squares to fit a function, f, to data. |
brentq(f, a, b[, args, xtol, rtol, maxiter, ...]) | Find a root of a function in given interval. |
brenth(f, a, b[, args, xtol, rtol, maxiter, ...]) | Find root of f in [a,b]. |
ridder(f, a, b[, args, xtol, rtol, maxiter, ...]) | Find a root of a function in an interval. |
bisect(f, a, b[, args, xtol, rtol, maxiter, ...]) | Find root of f in [a,b]. |
newton(func, x0[, fprime, args, tol, ...]) | Find a zero using the Newton-Raphson or secant method. |
Fixed point finding:
fixed_point(func, x0[, args, xtol, maxiter]) | Find the point where func(x) == x |
General nonlinear solvers:
root(fun, x0[, args, method, jac, tol, ...]) | Find a root of a vector function. |
fsolve(func, x0[, args, fprime, ...]) | Find the roots of a function. |
broyden1(F, xin[, iter, alpha, ...]) | Find a root of a function, using Broyden’s first Jacobian approximation. |
broyden2(F, xin[, iter, alpha, ...]) | Find a root of a function, using Broyden’s second Jacobian approximation. |
Large-scale nonlinear solvers:
newton_krylov(F, xin[, iter, rdiff, method, ...]) | Find a root of a function, using Krylov approximation for inverse Jacobian. |
anderson(F, xin[, iter, alpha, w0, M, ...]) | Find a root of a function, using (extended) Anderson mixing. |
Simple iterations:
excitingmixing(F, xin[, iter, alpha, ...]) | Find a root of a function, using a tuned diagonal Jacobian approximation. |
linearmixing(F, xin[, iter, alpha, verbose, ...]) | Find a root of a function, using a scalar Jacobian approximation. |
diagbroyden(F, xin[, iter, alpha, verbose, ...]) | Find a root of a function, using diagonal Broyden Jacobian approximation. |
line_search(f, myfprime, xk, pk[, gfk, ...]) | Find alpha that satisfies strong Wolfe conditions. |
check_grad(func, grad, x0, *args) | Check the correctness of a gradient function by comparing it against a (forward) finite-difference approximation of the gradient. |
show_options(solver[, method]) | Show documentation for additional options of optimization solvers. |