This is documentation for an old release of SciPy (version 0.10.0). Read this page Search for this page in the documentation of the latest stable release (version 1.15.1).
scipy.sparse.linalg.svds
-
scipy.sparse.linalg.svds(A, k=6, ncv=None, tol=0)
Compute k singular values/vectors for a sparse matrix using ARPACK.
Parameters : | A : sparse matrix
Array to compute the SVD on
k : int, optional
Number of singular values and vectors to compute.
ncv : integer
The number of Lanczos vectors generated
ncv must be greater than k+1 and smaller than n;
it is recommended that ncv > 2*k
tol : float, optional
Tolerance for singular values. Zero (default) means machine precision.
|