scipy.sparse.linalg.lobpcg

scipy.sparse.linalg.lobpcg(A, X, B=None, M=None, Y=None, tol=None, maxiter=20, largest=True, verbosityLevel=0, retLambdaHistory=False, retResidualNormsHistory=False)

Solve symmetric partial eigenproblems with optional preconditioning

This function implements the Locally Optimal Block Preconditioned Conjugate Gradient Method (LOBPCG).

Parameters :

A : {sparse matrix, dense matrix, LinearOperator}

The symmetric linear operator of the problem, usually a sparse matrix. Often called the “stiffness matrix”.

X : array_like

Initial approximation to the k eigenvectors. If A has shape=(n,n) then X should have shape shape=(n,k).

B : {dense matrix, sparse matrix, LinearOperator}, optional

the right hand side operator in a generalized eigenproblem. by default, B = Identity often called the “mass matrix”

M : {dense matrix, sparse matrix, LinearOperator}, optional

preconditioner to A; by default M = Identity M should approximate the inverse of A

Y : array_like, optional

n-by-sizeY matrix of constraints, sizeY < n The iterations will be performed in the B-orthogonal complement of the column-space of Y. Y must be full rank.

Returns :

w : array

Array of k eigenvalues

v : array

An array of k eigenvectors. V has the same shape as X.

Other Parameters:
 

tol : scalar, optional

Solver tolerance (stopping criterion) by default: tol=n*sqrt(eps)

maxiter: integer, optional :

maximum number of iterations by default: maxiter=min(n,20)

largest : boolean, optional

when True, solve for the largest eigenvalues, otherwise the smallest

verbosityLevel : integer, optional

controls solver output. default: verbosityLevel = 0.

retLambdaHistory : boolean, optional

whether to return eigenvalue history

retResidualNormsHistory : boolean, optional

whether to return history of residual norms

Notes

If both retLambdaHistory and retResidualNormsHistory are True, the return tuple has the following format (lambda, V, lambda history, residual norms history)

Previous topic

scipy.sparse.linalg.eigsh

Next topic

scipy.sparse.linalg.svds

This Page