numpy.ma.mask_or¶
- numpy.ma.mask_or(m1, m2, copy=False, shrink=True)[source]¶
Combine two masks with the logical_or operator.
The result may be a view on m1 or m2 if the other is nomask (i.e. False).
Parameters: m1, m2 : array_like
Input masks.
copy : bool, optional
If copy is False and one of the inputs is nomask, return a view of the other input mask. Defaults to False.
shrink : bool, optional
Whether to shrink the output to nomask if all its values are False. Defaults to True.
Returns: mask : output mask
The result masks values that are masked in either m1 or m2.
Raises: ValueError :
If m1 and m2 have different flexible dtypes.
Examples
>>> m1 = np.ma.make_mask([0, 1, 1, 0]) >>> m2 = np.ma.make_mask([1, 0, 0, 0]) >>> np.ma.mask_or(m1, m2) array([ True, True, True, False], dtype=bool)