numpy.ma.vander¶
- numpy.ma.vander(x, n=None)[source]¶
Generate a Van der Monde matrix.
The columns of the output matrix are decreasing powers of the input vector. Specifically, the i-th output column is the input vector raised element-wise to the power of N - i - 1. Such a matrix with a geometric progression in each row is named for Alexandre-Theophile Vandermonde.
Parameters : x : array_like
1-D input array.
N : int, optional
Order of (number of columns in) the output. If N is not specified, a square array is returned (N = len(x)).
Returns : out : ndarray
Van der Monde matrix of order N. The first column is x^(N-1), the second x^(N-2) and so forth.
Notes
Masked values in the input array result in rows of zeros.
Examples
>>> x = np.array([1, 2, 3, 5]) >>> N = 3 >>> np.vander(x, N) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]])
>>> np.column_stack([x**(N-1-i) for i in range(N)]) array([[ 1, 1, 1], [ 4, 2, 1], [ 9, 3, 1], [25, 5, 1]])
>>> x = np.array([1, 2, 3, 5]) >>> np.vander(x) array([[ 1, 1, 1, 1], [ 8, 4, 2, 1], [ 27, 9, 3, 1], [125, 25, 5, 1]])
The determinant of a square Vandermonde matrix is the product of the differences between the values of the input vector:
>>> np.linalg.det(np.vander(x)) 48.000000000000043 >>> (5-3)*(5-2)*(5-1)*(3-2)*(3-1)*(2-1) 48