numpy.ma.innerproduct¶
- numpy.ma.innerproduct(a, b)[source]¶
Inner product of two arrays.
Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes.
Parameters : a, b : array_like
If a and b are nonscalar, their last dimensions of must match.
Returns : out : ndarray
out.shape = a.shape[:-1] + b.shape[:-1]
Raises : ValueError
If the last dimension of a and b has different size.
See also
- tensordot
- Sum products over arbitrary axes.
- dot
- Generalised matrix product, using second last dimension of b.
- einsum
- Einstein summation convention.
Notes
Masked values are replaced by 0.
Examples
Ordinary inner product for vectors:
>>> a = np.array([1,2,3]) >>> b = np.array([0,1,0]) >>> np.inner(a, b) 2
A multidimensional example:
>>> a = np.arange(24).reshape((2,3,4)) >>> b = np.arange(4) >>> np.inner(a, b) array([[ 14, 38, 62], [ 86, 110, 134]])
An example where b is a scalar:
>>> np.inner(np.eye(2), 7) array([[ 7., 0.], [ 0., 7.]])