numpy.can_cast¶
- numpy.can_cast(from, totype, casting = 'safe')¶
Returns True if cast between data types can occur according to the casting rule. If from is a scalar or array scalar, also returns True if the scalar value can be cast without overflow or truncation to an integer.
Parameters : from : dtype, dtype specifier, scalar, or array
Data type, scalar, or array to cast from.
totype : dtype or dtype specifier
Data type to cast to.
casting : {‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional
Controls what kind of data casting may occur.
- ‘no’ means the data types should not be cast at all.
- ‘equiv’ means only byte-order changes are allowed.
- ‘safe’ means only casts which can preserve values are allowed.
- ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are allowed.
- ‘unsafe’ means any data conversions may be done.
Returns : out : bool
True if cast can occur according to the casting rule.
See also
Examples
Basic examples
>>> np.can_cast(np.int32, np.int64) True >>> np.can_cast(np.float64, np.complex) True >>> np.can_cast(np.complex, np.float) False
>>> np.can_cast('i8', 'f8') True >>> np.can_cast('i8', 'f4') False >>> np.can_cast('i4', 'S4') True
Casting scalars
>>> np.can_cast(100, 'i1') True >>> np.can_cast(150, 'i1') False >>> np.can_cast(150, 'u1') True
>>> np.can_cast(3.5e100, np.float32) False >>> np.can_cast(1000.0, np.float32) True
Array scalar checks the value, array does not
>>> np.can_cast(np.array(1000.0), np.float32) True >>> np.can_cast(np.array([1000.0]), np.float32) False
Using the casting rules
>>> np.can_cast('i8', 'i8', 'no') True >>> np.can_cast('<i8', '>i8', 'no') False
>>> np.can_cast('<i8', '>i8', 'equiv') True >>> np.can_cast('<i4', '>i8', 'equiv') False
>>> np.can_cast('<i4', '>i8', 'safe') True >>> np.can_cast('<i8', '>i4', 'safe') False
>>> np.can_cast('<i8', '>i4', 'same_kind') True >>> np.can_cast('<i8', '>u4', 'same_kind') False
>>> np.can_cast('<i8', '>u4', 'unsafe') True