Hermite Module, “Physicists’” (numpy.polynomial.hermite)
New in version 1.6.0.
This module provides a number of objects (mostly functions) useful for
dealing with Hermite series, including a Hermite class that
encapsulates the usual arithmetic operations.  (General information
on how this module represents and works with such polynomials is in the
docstring for its “parent” sub-package, numpy.polynomial).
Hermite Class
| Hermite(coef[, domain, window]) | 
A Hermite series class. | 
 
Basics
| hermval(x, c[, tensor]) | 
Evaluate an Hermite series at points x. | 
| hermval2d(x, y, c) | 
Evaluate a 2-D Hermite series at points (x, y). | 
| hermval3d(x, y, z, c) | 
Evaluate a 3-D Hermite series at points (x, y, z). | 
| hermgrid2d(x, y, c) | 
Evaluate a 2-D Hermite series on the Cartesian product of x and y. | 
| hermgrid3d(x, y, z, c) | 
Evaluate a 3-D Hermite series on the Cartesian product of x, y, and z. | 
| hermroots(c) | 
Compute the roots of a Hermite series. | 
| hermfromroots(roots) | 
Generate a Hermite series with given roots. | 
 
Fitting
| hermfit(x, y, deg[, rcond, full, w]) | 
Least squares fit of Hermite series to data. | 
| hermvander(x, deg) | 
Pseudo-Vandermonde matrix of given degree. | 
| hermvander2d(x, y, deg) | 
Pseudo-Vandermonde matrix of given degrees. | 
| hermvander3d(x, y, z, deg) | 
Pseudo-Vandermonde matrix of given degrees. | 
 
Calculus
| hermder(c[, m, scl, axis]) | 
Differentiate a Hermite series. | 
| hermint(c[, m, k, lbnd, scl, axis]) | 
Integrate a Hermite series. | 
 
Algebra
| hermadd(c1, c2) | 
Add one Hermite series to another. | 
| hermsub(c1, c2) | 
Subtract one Hermite series from another. | 
| hermmul(c1, c2) | 
Multiply one Hermite series by another. | 
| hermmulx(c) | 
Multiply a Hermite series by x. | 
| hermdiv(c1, c2) | 
Divide one Hermite series by another. | 
| hermpow(c, pow[, maxpower]) | 
Raise a Hermite series to a power. | 
 
Quadrature
| hermgauss(deg) | 
Gauss-Hermite quadrature. | 
| hermweight(x) | 
Weight function of the Hermite polynomials. |