numpy.insert

numpy.insert(arr, obj, values, axis=None)

Insert values along the given axis before the given indices.

Parameters:

arr : array_like

Input array.

obj : int, slice or sequence of ints

Object that defines the index or indices before which values is inserted.

values : array_like

Values to insert into arr. If the type of values is different from that of arr, values is converted to the type of arr.

axis : int, optional

Axis along which to insert values. If axis is None then arr is flattened first.

Returns:

out : ndarray

A copy of arr with values inserted. Note that insert does not occur in-place: a new array is returned. If axis is None, out is a flattened array.

See also

append
Append elements at the end of an array.
delete
Delete elements from an array.

Examples

>>> a = np.array([[1, 1], [2, 2], [3, 3]])
>>> a
array([[1, 1],
       [2, 2],
       [3, 3]])
>>> np.insert(a, 1, 5)
array([1, 5, 1, 2, 2, 3, 3])
>>> np.insert(a, 1, 5, axis=1)
array([[1, 5, 1],
       [2, 5, 2],
       [3, 5, 3]])
>>> b = a.flatten()
>>> b
array([1, 1, 2, 2, 3, 3])
>>> np.insert(b, [2, 2], [5, 6])
array([1, 1, 5, 6, 2, 2, 3, 3])
>>> np.insert(b, slice(2, 4), [5, 6])
array([1, 1, 5, 2, 6, 2, 3, 3])
>>> np.insert(b, [2, 2], [7.13, False]) # type casting
array([1, 1, 7, 0, 2, 2, 3, 3])
>>> x = np.arange(8).reshape(2, 4)
>>> idx = (1, 3)
>>> np.insert(x, idx, 999, axis=1)
array([[  0, 999,   1,   2, 999,   3],
       [  4, 999,   5,   6, 999,   7]])

Previous topic

numpy.delete

Next topic

numpy.append

This Page