New view of array with the same data.
Parameters: | dtype : data-type
type : python type
|
---|
Notes
a.view() is used two different ways.
a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory with a different dtype. This can cause a reinterpretation of the bytes of memory.
a.view(ndarray_subclass), or a.view(type=ndarray_subclass), just returns an instance of ndarray_subclass that looks at the same array (same shape, dtype, etc.). This does not cause a reinterpretation of the memory.
Examples
>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])
Viewing array data using a different type and dtype:
>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print type(y)
<class 'numpy.matrixlib.defmatrix.matrix'>
Creating a view on a structured array so it can be used in calculations
>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],
[3, 4]], dtype=int8)
>>> xv.mean(0)
array([ 2., 3.])
Making changes to the view changes the underlying array
>>> xv[0,1] = 20
>>> print x
[(1, 20) (3, 4)]
Using a view to convert an array to a record array:
>>> z = x.view(np.recarray)
>>> z.a
array([1], dtype=int8)
Views share data:
>>> x[0] = (9, 10)
>>> z[0]
(9, 10)