ma.MaskType |
ma.masked_array | Arrays with possibly masked values. Masked values of True exclude the corresponding element from any computation. |
ma.array (data[, dtype, copy, order, ...]) | Arrays with possibly masked values. Masked values of True exclude the corresponding element from any computation. |
ma.copy () | copy a.copy(order=’C’) |
ma.frombuffer (buffer[, dtype, count, offset]) | Interpret a buffer as a 1-dimensional array. |
ma.fromfunction (function, shape, **kwargs) | Construct an array by executing a function over each coordinate. |
ma.MaskedArray.copy ([order]) | Return a copy of the array. |
ma.empty (shape[, dtype, order]) | Return a new array of given shape and type, without initialising entries. |
ma.empty_like (a) | Create a new array with the same shape and type as another. |
ma.masked_all (shape[, dtype]) | Return an empty masked array of the given shape and dtype, where all the data are masked. |
ma.masked_all_like (arr) | Return an empty masked array of the same shape and dtype as the array a, where all the data are masked. |
ma.ones (shape[, dtype, order]) | Return a new array of given shape and type, filled with ones. |
ma.zeros (shape[, dtype, order]) | Return a new array of given shape and type, filled with zeros. |
ma.all (self[, axis, out]) | Check if all of the elements of a are true. |
ma.any (self[, axis, out]) | Check if any of the elements of a are true. |
ma.count (a[, axis]) | Count the non-masked elements of the array along the given axis. |
ma.count_masked (arr[, axis]) | Count the number of masked elements along the given axis. |
ma.getmask (a) | Return the mask of a, if any, or nomask. |
ma.getmaskarray (arr) | Return the mask of arr, if any, or a boolean array of the shape of a, full of False. |
ma.getdata (a[, subok]) | Return the _data part of a if a is a MaskedArray, or a itself. |
ma.nonzero (self) | Return the indices of the elements of a that are not zero nor masked, as a tuple of arrays. |
ma.shape (obj) | Return the shape of an array. |
ma.size (obj[, axis]) | Return the number of elements along a given axis. |
ma.MaskedArray.data | |
ma.MaskedArray.mask | Mask |
ma.MaskedArray.recordmask | |
ma.MaskedArray.all (self[, axis, out]) | Check if all of the elements of a are true. |
ma.MaskedArray.any (self[, axis, out]) | Check if any of the elements of a are true. |
ma.MaskedArray.count (self[, axis]) | Count the non-masked elements of the array along the given axis. |
ma.MaskedArray.nonzero (self) | Return the indices of the elements of a that are not zero nor masked, as a tuple of arrays. |
ma.shape (obj) | Return the shape of an array. |
ma.size (obj[, axis]) | Return the number of elements along a given axis. |
ma.ravel (self) | Returns a 1D version of self, as a view. |
ma.reshape (a, new_shape[, order]) | Change the shape of the array a to new_shape. |
ma.resize (x, new_shape) | Return a new array with the specified shape. |
ma.MaskedArray.flatten ([order]) | Collapse an array into one dimension. |
ma.MaskedArray.ravel (self) | Returns a 1D version of self, as a view. |
ma.MaskedArray.reshape (self, *s, **kwargs) | Returns a masked array containing the data of a, but with a new shape. The result is a view to the original array; if this is not possible, a ValueError is raised. |
ma.MaskedArray.resize (self, newshape[, refcheck, order]) | Change shape and size of array in-place. |
ma.swapaxes () | swapaxes a.swapaxes(axis1, axis2) |
ma.transpose (a[, axes]) | Return a view of the array with dimensions permuted according to axes, as a masked array. |
ma.MaskedArray.swapaxes (axis1, axis2) | Return a view of the array with axis1 and axis2 interchanged. |
ma.MaskedArray.transpose (*axes) | Returns a view of ‘a’ with axes transposed. If no axes are given, or None is passed, switches the order of the axes. For a 2-d array, this is the usual matrix transpose. If axes are given, they describe how the axes are permuted. |
ma.atleast_1d (*arys) | Convert inputs to arrays with at least one dimension. |
ma.atleast_2d (*arys) | View inputs as arrays with at least two dimensions. |
ma.atleast_3d (*arys) | View inputs as arrays with at least three dimensions. |
ma.expand_dims (x, axis) | Expand the shape of the array by including a new axis before the given one. |
ma.squeeze (a) | Remove single-dimensional entries from the shape of an array. |
ma.MaskedArray.squeeze () | Remove single-dimensional entries from the shape of a. |
ma.column_stack (tup) | Stack 1-D arrays as columns into a 2-D array |
ma.concatenate (arrays[, axis]) | Concatenate the arrays along the given axis. |
ma.dstack (tup) | Stack arrays in sequence depth wise (along third axis) |
ma.hstack (tup) | Stack arrays in sequence horizontally (column wise) |
ma.hsplit (ary, indices_or_sections) | Split array into multiple sub-arrays horizontally. |
ma.mr_ | Translate slice objects to concatenation along the first axis. |
ma.row_stack (tup) | Stack arrays vertically. |
ma.vstack (tup) | Stack arrays vertically. |
ma.column_stack (tup) | Stack 1-D arrays as columns into a 2-D array |
ma.concatenate (arrays[, axis]) | Concatenate the arrays along the given axis. |
ma.dstack (tup) | Stack arrays in sequence depth wise (along third axis) |
ma.hstack (tup) | Stack arrays in sequence horizontally (column wise) |
ma.vstack (tup) | Stack arrays vertically. |
ma.make_mask (m[, copy, shrink, flag, ...]) | Return m as a mask, creating a copy if necessary or requested. |
ma.make_mask_none (newshape[, dtype]) | Return a mask of shape s, filled with False. |
ma.mask_or (m1, m2[, copy, shrink]) | Return the combination of two masks m1 and m2. |
ma.make_mask_descr (ndtype) | Constructs a dtype description list from a given dtype. Each field is set to a bool. |
ma.getmask (a) | Return the mask of a, if any, or nomask. |
ma.getmaskarray (arr) | Return the mask of arr, if any, or a boolean array of the shape of a, full of False. |
ma.masked_array.mask | Mask |
ma.flatnotmasked_contiguous (a) | Find contiguous unmasked data in a flattened masked array. |
ma.flatnotmasked_edges (a) | Find the indices of the first and last not masked values in a 1D masked array. If all values are masked, returns None. |
ma.notmasked_contiguous (a[, axis]) | Find contiguous unmasked data in a masked array along the given axis. |
ma.notmasked_edges (a[, axis]) | Find the indices of the first and last not masked values along the given axis in a masked array. |
ma.mask_cols (a[, axis]) | Mask whole columns of a 2D array that contain masked values. |
ma.mask_or (m1, m2[, copy, shrink]) | Return the combination of two masks m1 and m2. |
ma.mask_rowcols (a[, axis]) | Mask whole rows and/or columns of a 2D array that contain masked values. The masking behavior is selected with the axis parameter. |
ma.mask_rows (a[, axis]) | Mask whole rows of a 2D array that contain masked values. |
ma.harden_mask () | harden_mask(self) Force the mask to hard. |
ma.soften_mask () | soften_mask(self) Force the mask to soft. |
ma.MaskedArray.harden_mask (self) | Force the mask to hard. |
ma.MaskedArray.soften_mask (self) | Force the mask to soft. |
ma.MaskedArray.shrink_mask (self) | Reduce a mask to nomask when possible. |
ma.MaskedArray.unshare_mask (self) | Copy the mask and set the sharedmask flag to False. |
ma.asarray (a[, dtype, order]) | Convert the input a to a masked array of the given datatype. |
ma.asanyarray (a[, dtype]) | Convert the input a to a masked array of the given datatype. If a is a subclass of MaskedArray, its class is conserved. |
ma.fix_invalid (a[, mask, copy, fill_value]) | Return (a copy of) a where invalid data (nan/inf) are masked and replaced by fill_value. |
ma.masked_equal (x, value[, copy]) | Shortcut to masked_where, with condition (x == value). |
ma.masked_greater (x, value[, copy]) | Return the array x masked where (x > value). Any value of mask already masked is kept masked. |
ma.masked_greater_equal (x, value[, copy]) | Shortcut to masked_where, with condition (x >= value). |
ma.masked_inside (x, v1, v2[, copy]) | Shortcut to masked_where, where condition is True for x inside the interval [v1,v2] (v1 <= x <= v2). The boundaries v1 and v2 can be given in either order. |
ma.masked_invalid (a[, copy]) | Mask the array for invalid values (NaNs or infs). Any preexisting mask is conserved. |
ma.masked_less (x, value[, copy]) | Shortcut to masked_where, with condition (x < value). |
ma.masked_less_equal (x, value[, copy]) | Shortcut to masked_where, with condition (x <= value). |
ma.masked_not_equal (x, value[, copy]) | Shortcut to masked_where, with condition (x != value). |
ma.masked_object (x, value[, copy, shrink]) | Mask the array x where the data are exactly equal to value. |
ma.masked_outside (x, v1, v2[, copy]) | Shortcut to masked_where, where condition is True for x outside the interval [v1,v2] (x < v1)|(x > v2). The boundaries v1 and v2 can be given in either order. |
ma.masked_values (x, value[, rtol, atol, copy, ...]) | Mask the array x where the data are approximately equal in value, i.e. (abs(x - value) <= atol+rtol*abs(value)) |
ma.masked_where (condition, a[, copy]) | Return a as an array masked where condition is True. Masked values of a or condition are kept. |
ma.compress_cols (a) | Suppress whole columns of a 2D array that contain masked values. |
ma.compress_rowcols (x[, axis]) | Suppress the rows and/or columns of a 2D array that contain masked values. |
ma.compress_rows (a) | Suppress whole rows of a 2D array that contain masked values. |
ma.compressed (x) | Return a 1-D array of all the non-masked data. |
ma.filled (a[, fill_value]) | Return a as an array where masked data have been replaced by value. |
ma.MaskedArray.compressed (self) | Return a 1-D array of all the non-masked data. |
ma.MaskedArray.filled (self[, fill_value]) | Return a copy of self, where masked values are filled with fill_value. |
ma.MaskedArray.tofile (self, fid[, sep, format]) | |
ma.MaskedArray.tolist (self[, fill_value]) | Copy the data portion of the array to a hierarchical python list and returns that list. |
ma.MaskedArray.torecords (self) | Transforms a MaskedArray into a flexible-type array with two fields: |
ma.MaskedArray.tostring (self[, fill_value, order]) | Return a copy of array data as a Python string containing the raw bytes in the array. The array is filled beforehand. |
ma.dump (a, F) | Pickle the MaskedArray a to the file F. F can either be the handle of an exiting file, or a string representing a file name. |
ma.dumps (a) | Return a string corresponding to the pickling of the MaskedArray. |
ma.load (F) | Wrapper around cPickle.load which accepts either a file-like object or a filename. |
ma.loads (strg) | Load a pickle from the current string. |
ma.common_fill_value (a, b) | Return the common filling value of a and b, if any. If a and b have different filling values, returns None. |
ma.default_fill_value (obj) | Calculate the default fill value for the argument object. |
ma.maximum_fill_value (obj) | Calculate the default fill value suitable for taking the maximum of obj. |
ma.maximum_fill_value (obj) | Calculate the default fill value suitable for taking the maximum of obj. |
ma.set_fill_value (a, fill_value) | Set the filling value of a, if a is a masked array. Otherwise, do nothing. |
ma.MaskedArray.get_fill_value (self) | Return the filling value. |
ma.MaskedArray.set_fill_value (self[, value]) | Set the filling value to value. |
ma.MaskedArray.fill_value | Filling value. |
ma.anom (self[, axis, dtype]) | Return the anomalies (deviations from the average) along the given axis. |
ma.anomalies (self[, axis, dtype]) | Return the anomalies (deviations from the average) along the given axis. |
ma.average (a[, axis, weights, returned]) | Average the array over the given axis. |
ma.conjugate (x[, out]) | Return the complex conjugate, element-wise. |
ma.corrcoef (x[, y, rowvar, bias, ...]) | The correlation coefficients formed from the array x, where the rows are the observations, and the columns are variables. |
ma.cov (x[, y, rowvar, bias, ...]) | Estimates the covariance matrix. |
ma.cumsum (self[, axis, dtype, out]) | Return the cumulative sum of the elements along the given axis. The cumulative sum is calculated over the flattened array by default, otherwise over the specified axis. |
ma.cumprod (self[, axis, dtype, out]) | Return the cumulative product of the elements along the given axis. The cumulative product is taken over the flattened array by default, otherwise over the specified axis. |
ma.mean (self[, axis, dtype, out]) | Returns the average of the array elements along given axis. Refer to numpy.mean for full documentation. |
ma.median (a[, axis, out, overwrite_input]) | Compute the median along the specified axis. |
ma.power (a, b[, third]) | Computes a**b elementwise. |
ma.prod (self[, axis, dtype, out]) | Return the product of the array elements over the given axis. Masked elements are set to 1 internally for computation. |
ma.std (self[, axis, dtype, out, ...]) | Compute the standard deviation along the specified axis. |
ma.sum (self[, axis, dtype, out]) | Return the sum of the array elements over the given axis. Masked elements are set to 0 internally. |
ma.var (self[, axis, dtype, out, ...]) | Compute the variance along the specified axis. |
ma.MaskedArray.anom (self[, axis, dtype]) | Return the anomalies (deviations from the average) along the given axis. |
ma.MaskedArray.cumprod (self[, axis, dtype, out]) | Return the cumulative product of the elements along the given axis. The cumulative product is taken over the flattened array by default, otherwise over the specified axis. |
ma.MaskedArray.cumsum (self[, axis, dtype, out]) | Return the cumulative sum of the elements along the given axis. The cumulative sum is calculated over the flattened array by default, otherwise over the specified axis. |
ma.MaskedArray.mean (self[, axis, dtype, out]) | Returns the average of the array elements along given axis. Refer to numpy.mean for full documentation. |
ma.MaskedArray.prod (self[, axis, dtype, out]) | Return the product of the array elements over the given axis. Masked elements are set to 1 internally for computation. |
ma.MaskedArray.std (self[, axis, dtype, out, ...]) | Compute the standard deviation along the specified axis. |
ma.MaskedArray.sum (self[, axis, dtype, out]) | Return the sum of the array elements over the given axis. Masked elements are set to 0 internally. |
ma.MaskedArray.var (self[, axis, dtype, out, ...]) | Compute the variance along the specified axis. |
ma.argmax (a[, axis, fill_value]) | Function version of the eponymous method. |
ma.argmin (a[, axis, fill_value]) | Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had the value fill_value. |
ma.max (obj[, axis, out, fill_value]) | Return the maximum along a given axis. |
ma.min (obj[, axis, out, fill_value]) | Return the minimum along a given axis. |
ma.ptp (obj[, axis, out, fill_value]) | Return (maximum - minimum) along the the given dimension (i.e. peak-to-peak value). |
ma.MaskedArray.argmax (self[, axis, fill_value, ...]) | Returns array of indices of the maximum values along the given axis. Masked values are treated as if they had the value fill_value. |
ma.MaskedArray.argmin (self[, axis, fill_value, ...]) | Return array of indices to the minimum values along the given axis. |
ma.MaskedArray.max (self[, axis, out, fill_value]) | Return the maximum along a given axis. |
ma.MaskedArray.min (self[, axis, out, fill_value]) | Return the minimum along a given axis. |
ma.MaskedArray.ptp (self[, axis, out, fill_value]) | Return (maximum - minimum) along the the given dimension (i.e. peak-to-peak value). |
ma.argsort (a[, axis, kind, order, ...]) | Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to fill_value. |
ma.sort (a[, axis, kind, order, ...]) | Return a sorted copy of an array. |
ma.MaskedArray.argsort (self[, axis, fill_value, ...]) | Return an ndarray of indices that sort the array along the specified axis. Masked values are filled beforehand to fill_value. |
ma.MaskedArray.sort (self[, axis, kind, order, ...]) | Return a sorted copy of an array. |
ma.diag (v[, k]) | Extract a diagonal or construct a diagonal array. |
ma.dot (a, b[, strict]) | Return the dot product of two 2D masked arrays a and b. |
ma.identity (n[, dtype]) | Return the identity array. |
ma.inner (a, b) | Inner product of two arrays. |
ma.innerproduct (a, b) | Inner product of two arrays. |
ma.outer (a, b) | Returns the outer product of two vectors. |
ma.outerproduct (a, b) | Returns the outer product of two vectors. |
ma.trace (self[, offset, axis1, axis2, ...]) | Return the sum along diagonals of the array. |
ma.transpose (a[, axes]) | Return a view of the array with dimensions permuted according to axes, as a masked array. |
ma.MaskedArray.trace ([offset, axis1, axis2, ...]) | Return the sum along diagonals of the array. |
ma.MaskedArray.transpose (*axes) | Returns a view of ‘a’ with axes transposed. If no axes are given, or None is passed, switches the order of the axes. For a 2-d array, this is the usual matrix transpose. If axes are given, they describe how the axes are permuted. |
ma.vander (x[, n]) | Generate a Van der Monde matrix. |
ma.polyfit (x, y, deg[, rcond, full]) | Least squares polynomial fit. |
ma.around () | Round an array to the given number of decimals. |
ma.clip (a, a_min, a_max[, out]) | Clip (limit) the values in an array. |
ma.round (a[, decimals, out]) | Return a copy of a, rounded to ‘decimals’ places. |
ma.MaskedArray.clip (a_min, a_max[, out]) | Return an array whose values are limited to [a_min, a_max]. |
ma.MaskedArray.round ([decimals, out]) | Return an array rounded a to the given number of decimals. |
ma.allequal (a, b[, fill_value]) | Return True if all entries of a and b are equal, using fill_value as a truth value where either or both are masked. |
ma.allclose (a, b[, masked_equal, rtol, ...]) | Returns True if two arrays are element-wise equal within a tolerance. |
ma.apply_along_axis (func1d, axis, arr, ...) | Apply function to 1-D slices along the given axis. |
ma.arange ([start,] stop[, step, ...]) | Return evenly spaced values within a given interval. |
ma.choose (a, choices[, out, mode]) | Use an index array to construct a new array from a set of choices. |
ma.ediff1d (arr[, to_end, to_begin]) | Computes the differences between consecutive elements of an array. |
ma.indices (dimensions[, dtype]) | Return an array representing the indices of a grid. |
ma.where (condition | x, y) | Returns a (subclass of) masked array, shaped like condition, where the elements are x when condition is True, and y otherwise. If neither x nor y are given, returns a tuple of indices where condition is True (a la condition.nonzero()). |