numpy.linalg.cond

numpy.linalg.cond(x, p=None)

Compute the condition number of a matrix.

The condition number of x is the norm of x times the norm of the inverse of x. The norm can be the usual L2 (root-of-sum-of-squares) norm or a number of other matrix norms.

Parameters:

x : array_like, shape (M, N)

The matrix whose condition number is sought.

p : {None, 1, -1, 2, -2, inf, -inf, ‘fro’}

Order of the norm:

p

norm for matrices

None

2-norm, computed directly using the SVD

‘fro’

Frobenius norm

inf

max(sum(abs(x), axis=1))

-inf

min(sum(abs(x), axis=1))

1

max(sum(abs(x), axis=0))

-1

min(sum(abs(x), axis=0))

2

2-norm (largest sing. value)

-2

smallest singular value

Returns:

c : float

The condition number of the matrix. May be infinite.

Previous topic

numpy.linalg.norm

Next topic

numpy.linalg.det

This Page

Quick search