What’s New or Different¶
Warning
The Box-Muller method used to produce NumPy’s normals is no longer available
in Generator
. It is not possible to reproduce the exact random
values using Generator
for the normal distribution or any other
distribution that relies on the normal such as the gamma
or
standard_t
. If you require bitwise backward compatible
streams, use RandomState
.
Quick comparison of legacy mtrand to the new Generator
Feature | Older Equivalent | Notes |
Generator |
RandomState |
Generator requires a stream
source, called a BitGenerator A number of these
are provided. RandomState uses
the Mersenne Twister MT19937 by
default, but can also be instantiated
with any BitGenerator. |
random |
random_sample ,
rand |
Access the values in a BitGenerator,
convert them to Many other distributions are also supported. |
integers |
randint ,
random_integers |
Use the endpoint kwarg to adjust
the inclusion or exclution of the
high interval endpoint |
And in more detail:
random_entropy
provides access to the system source of randomness that is used in cryptographic applications (e.g.,/dev/urandom
on Unix).- Simulate from the complex normal distribution (complex_normal)
- The normal, exponential and gamma generators use 256-step Ziggurat
methods which are 2-10 times faster than NumPy’s default implementation in
standard_normal
,standard_exponential
orstandard_gamma
. integers
is now the canonical way to generate integer random numbers from a discrete uniform distribution. Therand
andrandn
methods are only available through the legacyRandomState
. This replaces bothrandint
and the deprecatedrandom_integers
.- The Box-Muller method used to produce NumPy’s normals is no longer available.
- All bit generators can produce doubles, uint64s and
uint32s via CTypes (
ctypes
) and CFFI (cffi
). This allows these bit generators to be used in numba. - The bit generators can be used in downstream projects via Cython.
In [1]: from numpy.random import Generator, PCG64
In [2]: import numpy.random
In [3]: rg = Generator(PCG64())
In [4]: %timeit rg.standard_normal(100000)
...: %timeit numpy.random.standard_normal(100000)
...:
792 us +- 4.07 us per loop (mean +- std. dev. of 7 runs, 1000 loops each)
1.87 ms +- 20.3 us per loop (mean +- std. dev. of 7 runs, 1000 loops each)
In [5]: %timeit rg.standard_exponential(100000)
...: %timeit numpy.random.standard_exponential(100000)
...:
372 us +- 2.73 us per loop (mean +- std. dev. of 7 runs, 1000 loops each)
1.35 ms +- 7.16 us per loop (mean +- std. dev. of 7 runs, 1000 loops each)
In [6]: %timeit rg.standard_gamma(3.0, 100000)
...: %timeit numpy.random.standard_gamma(3.0, 100000)
...:
1.84 ms +- 6.24 us per loop (mean +- std. dev. of 7 runs, 1000 loops each)
3.92 ms +- 39.3 us per loop (mean +- std. dev. of 7 runs, 100 loops each)
- Optional
dtype
argument that acceptsnp.float32
ornp.float64
to produce either single or double prevision uniform random variables for select distributions- Uniforms (
random
andintegers
) - Normals (
standard_normal
) - Standard Gammas (
standard_gamma
) - Standard Exponentials (
standard_exponential
)
- Uniforms (
In [7]: rg = Generator(PCG64(0))
In [8]: rg.random(3, dtype='d')
Out[8]: array([0.63696169, 0.26978671, 0.04097352])
In [9]: rg.random(3, dtype='f')