numpy.log¶
-
numpy.
log
(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj]) = <ufunc 'log'>¶ Natural logarithm, element-wise.
The natural logarithm
log
is the inverse of the exponential function, so that log(exp(x)) = x. The natural logarithm is logarithm in basee
.Parameters: - x : array_like
Input value.
- out : ndarray, None, or tuple of ndarray and None, optional
A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs.
- where : array_like, optional
Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone.
- **kwargs
For other keyword-only arguments, see the ufunc docs.
Returns: - y : ndarray
The natural logarithm of x, element-wise. This is a scalar if x is a scalar.
Notes
Logarithm is a multivalued function: for each x there is an infinite number of z such that exp(z) = x. The convention is to return the z whose imaginary part lies in [-pi, pi].
For real-valued input data types,
log
always returns real output. For each value that cannot be expressed as a real number or infinity, it yieldsnan
and sets the invalid floating point error flag.For complex-valued input,
log
is a complex analytical function that has a branch cut [-inf, 0] and is continuous from above on it.log
handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard.References
[1] M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions”, 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ [2] Wikipedia, “Logarithm”. https://en.wikipedia.org/wiki/Logarithm Examples
>>> np.log([1, np.e, np.e**2, 0]) array([ 0., 1., 2., -Inf])