SciPy

numpy.asarray

numpy.asarray(a, dtype=None, order=None)[source]

Convert the input to an array.

Parameters:
a : array_like

Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays.

dtype : data-type, optional

By default, the data-type is inferred from the input data.

order : {‘C’, ‘F’}, optional

Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to ‘C’.

Returns:
out : ndarray

Array interpretation of a. No copy is performed if the input is already an ndarray with matching dtype and order. If a is a subclass of ndarray, a base class ndarray is returned.

See also

asanyarray
Similar function which passes through subclasses.
ascontiguousarray
Convert input to a contiguous array.
asfarray
Convert input to a floating point ndarray.
asfortranarray
Convert input to an ndarray with column-major memory order.
asarray_chkfinite
Similar function which checks input for NaNs and Infs.
fromiter
Create an array from an iterator.
fromfunction
Construct an array by executing a function on grid positions.

Examples

Convert a list into an array:

>>> a = [1, 2]
>>> np.asarray(a)
array([1, 2])

Existing arrays are not copied:

>>> a = np.array([1, 2])
>>> np.asarray(a) is a
True

If dtype is set, array is copied only if dtype does not match:

>>> a = np.array([1, 2], dtype=np.float32)
>>> np.asarray(a, dtype=np.float32) is a
True
>>> np.asarray(a, dtype=np.float64) is a
False

Contrary to asanyarray, ndarray subclasses are not passed through:

>>> issubclass(np.recarray, np.ndarray)
True
>>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray)
>>> np.asarray(a) is a
False
>>> np.asanyarray(a) is a
True

Previous topic

numpy.array

Next topic

numpy.asanyarray