numpy.asanyarray¶
-
numpy.
asanyarray
(a, dtype=None, order=None)[source]¶ Convert the input to an ndarray, but pass ndarray subclasses through.
Parameters: - a : array_like
Input data, in any form that can be converted to an array. This includes scalars, lists, lists of tuples, tuples, tuples of tuples, tuples of lists, and ndarrays.
- dtype : data-type, optional
By default, the data-type is inferred from the input data.
- order : {‘C’, ‘F’}, optional
Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to ‘C’.
Returns: - out : ndarray or an ndarray subclass
Array interpretation of a. If a is an ndarray or a subclass of ndarray, it is returned as-is and no copy is performed.
See also
asarray
- Similar function which always returns ndarrays.
ascontiguousarray
- Convert input to a contiguous array.
asfarray
- Convert input to a floating point ndarray.
asfortranarray
- Convert input to an ndarray with column-major memory order.
asarray_chkfinite
- Similar function which checks input for NaNs and Infs.
fromiter
- Create an array from an iterator.
fromfunction
- Construct an array by executing a function on grid positions.
Examples
Convert a list into an array:
>>> a = [1, 2] >>> np.asanyarray(a) array([1, 2])
Instances of
ndarray
subclasses are passed through as-is:>>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) >>> np.asanyarray(a) is a True