SciPy

numpy.resize

numpy.resize(a, new_shape)[source]

Return a new array with the specified shape.

If the new array is larger than the original array, then the new array is filled with repeated copies of a. Note that this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of a.

Parameters:

a : array_like

Array to be resized.

new_shape : int or tuple of int

Shape of resized array.

Returns:

reshaped_array : ndarray

The new array is formed from the data in the old array, repeated if necessary to fill out the required number of elements. The data are repeated in the order that they are stored in memory.

See also

ndarray.resize
resize an array in-place.

Examples

>>> a=np.array([[0,1],[2,3]])
>>> np.resize(a,(2,3))
array([[0, 1, 2],
       [3, 0, 1]])
>>> np.resize(a,(1,4))
array([[0, 1, 2, 3]])
>>> np.resize(a,(2,4))
array([[0, 1, 2, 3],
       [0, 1, 2, 3]])

Previous topic

numpy.append

Next topic

numpy.trim_zeros