SciPy

numpy.ones_like

numpy.ones_like(a, dtype=None, order='K', subok=True)[source]

Return an array of ones with the same shape and type as a given array.

Parameters:

a : array_like

The shape and data-type of a define these same attributes of the returned array.

dtype : data-type, optional

Overrides the data type of the result.

New in version 1.6.0.

order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional

Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as closely as possible.

New in version 1.6.0.

subok : bool, optional.

If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will be a base-class array. Defaults to True.

Returns:

out : ndarray

Array of ones with the same shape and type as a.

See also

zeros_like
Return an array of zeros with shape and type of input.
empty_like
Return an empty array with shape and type of input.
zeros
Return a new array setting values to zero.
ones
Return a new array setting values to one.
empty
Return a new uninitialized array.

Examples

>>> x = np.arange(6)
>>> x = x.reshape((2, 3))
>>> x
array([[0, 1, 2],
       [3, 4, 5]])
>>> np.ones_like(x)
array([[1, 1, 1],
       [1, 1, 1]])
>>> y = np.arange(3, dtype=np.float)
>>> y
array([ 0.,  1.,  2.])
>>> np.ones_like(y)
array([ 1.,  1.,  1.])

Previous topic

numpy.ones

Next topic

numpy.zeros