numpy.linalg.eigvalsh¶
- numpy.linalg.eigvalsh(a, UPLO='L')[source]¶
Compute the eigenvalues of a Hermitian or real symmetric matrix.
Main difference from eigh: the eigenvectors are not computed.
Parameters: a : (..., M, M) array_like
A complex- or real-valued matrix whose eigenvalues are to be computed.
UPLO : {‘L’, ‘U’}, optional
Same as lower, with ‘L’ for lower and ‘U’ for upper triangular. Deprecated.
Returns: w : (..., M,) ndarray
The eigenvalues in ascending order, each repeated according to its multiplicity.
Raises: LinAlgError
If the eigenvalue computation does not converge.
See also
Notes
New in version 1.8.0.
Broadcasting rules apply, see the numpy.linalg documentation for details.
The eigenvalues are computed using LAPACK routines _syevd, _heevd
Examples
>>> from numpy import linalg as LA >>> a = np.array([[1, -2j], [2j, 5]]) >>> LA.eigvalsh(a) array([ 0.17157288, 5.82842712])