numpy.full_like¶
- numpy.full_like(a, fill_value, dtype=None, order='K', subok=True)[source]¶
Return a full array with the same shape and type as a given array.
Parameters: a : array_like
The shape and data-type of a define these same attributes of the returned array.
fill_value : scalar
Fill value.
dtype : data-type, optional
Overrides the data type of the result.
order : {‘C’, ‘F’, ‘A’, or ‘K’}, optional
Overrides the memory layout of the result. ‘C’ means C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’ means match the layout of a as closely as possible.
subok : bool, optional.
If True, then the newly created array will use the sub-class type of ‘a’, otherwise it will be a base-class array. Defaults to True.
Returns: out : ndarray
Array of fill_value with the same shape and type as a.
See also
- zeros_like
- Return an array of zeros with shape and type of input.
- ones_like
- Return an array of ones with shape and type of input.
- empty_like
- Return an empty array with shape and type of input.
- zeros
- Return a new array setting values to zero.
- ones
- Return a new array setting values to one.
- empty
- Return a new uninitialized array.
- full
- Fill a new array.
Examples
>>> x = np.arange(6, dtype=np.int) >>> np.full_like(x, 1) array([1, 1, 1, 1, 1, 1]) >>> np.full_like(x, 0.1) array([0, 0, 0, 0, 0, 0]) >>> np.full_like(x, 0.1, dtype=np.double) array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) >>> np.full_like(x, np.nan, dtype=np.double) array([ nan, nan, nan, nan, nan, nan])
>>> y = np.arange(6, dtype=np.double) >>> np.full_like(y, 0.1) array([ 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])