scipy.stats.median_absolute_deviation(*args, **kwds)

median_absolute_deviation is deprecated, use median_abs_deviation instead!

To preserve the existing default behavior, use scipy.stats.median_abs_deviation(…, scale=1/1.4826). The value 1.4826 is not numerically precise for scaling with a normal distribution. For a numerically precise value, use scipy.stats.median_abs_deviation(…, scale=’normal’).

Compute the median absolute deviation of the data along the given axis.

The median absolute deviation (MAD, [1]) computes the median over the absolute deviations from the median. It is a measure of dispersion similar to the standard deviation but more robust to outliers [2].

The MAD of an empty array is np.nan.

New in version 1.3.0.


Input array or object that can be converted to an array.

axisint or None, optional

Axis along which the range is computed. Default is 0. If None, compute the MAD over the entire array.

centercallable, optional

A function that will return the central value. The default is to use np.median. Any user defined function used will need to have the function signature func(arr, axis).

scaleint, optional

The scaling factor applied to the MAD. The default scale (1.4826) ensures consistency with the standard deviation for normally distributed data.

nan_policy{‘propagate’, ‘raise’, ‘omit’}, optional

Defines how to handle when input contains nan. The following options are available (default is ‘propagate’):

  • ‘propagate’: returns nan

  • ‘raise’: throws an error

  • ‘omit’: performs the calculations ignoring nan values

madscalar or ndarray

If axis=None, a scalar is returned. If the input contains integers or floats of smaller precision than np.float64, then the output data-type is np.float64. Otherwise, the output data-type is the same as that of the input.


The center argument only affects the calculation of the central value around which the MAD is calculated. That is, passing in center=np.mean will calculate the MAD around the mean - it will not calculate the mean absolute deviation.



“Median absolute deviation”,


“Robust measures of scale”,


When comparing the behavior of median_absolute_deviation with np.std, the latter is affected when we change a single value of an array to have an outlier value while the MAD hardly changes:

>>> from scipy import stats
>>> x = stats.norm.rvs(size=100, scale=1, random_state=123456)
>>> x.std()
>>> stats.median_absolute_deviation(x)
>>> x[0] = 345.6
>>> x.std()
>>> stats.median_absolute_deviation(x)

Axis handling example:

>>> x = np.array([[10, 7, 4], [3, 2, 1]])
>>> x
array([[10,  7,  4],
       [ 3,  2,  1]])
>>> stats.median_absolute_deviation(x)
array([5.1891, 3.7065, 2.2239])
>>> stats.median_absolute_deviation(x, axis=None)