scipy.stats.mstats.describe#

scipy.stats.mstats.describe(a, axis=0, ddof=0, bias=True)[source]#

Computes several descriptive statistics of the passed array.

Parameters
aarray_like

Data array

axisint or None, optional

Axis along which to calculate statistics. Default 0. If None, compute over the whole array a.

ddofint, optional

degree of freedom (default 0); note that default ddof is different from the same routine in stats.describe

biasbool, optional

If False, then the skewness and kurtosis calculations are corrected for statistical bias.

Returns
nobsint

(size of the data (discarding missing values)

minmax(int, int)

min, max

meanfloat

arithmetic mean

variancefloat

unbiased variance

skewnessfloat

biased skewness

kurtosisfloat

biased kurtosis

Examples

>>> from scipy.stats.mstats import describe
>>> ma = np.ma.array(range(6), mask=[0, 0, 0, 1, 1, 1])
>>> describe(ma)
DescribeResult(nobs=3, minmax=(masked_array(data=0,
             mask=False,
       fill_value=999999), masked_array(data=2,
             mask=False,
       fill_value=999999)), mean=1.0, variance=0.6666666666666666,
       skewness=masked_array(data=0., mask=False, fill_value=1e+20),
        kurtosis=-1.5)