scipy.stats._result_classes.RelativeRiskResult.confidence_interval#
- RelativeRiskResult.confidence_interval(confidence_level=0.95)[source]#
Compute the confidence interval for the relative risk.
The confidence interval is computed using the Katz method (i.e. “Method C” of [1]; see also [2], section 3.1.2).
- Parameters
- confidence_levelfloat, optional
The confidence level to use for the confidence interval. Default is 0.95.
- Returns
- ciConfidenceInterval instance
The return value is an object with attributes
low
andhigh
that hold the confidence interval.
References
- 1
D. Katz, J. Baptista, S. P. Azen and M. C. Pike, “Obtaining confidence intervals for the risk ratio in cohort studies”, Biometrics, 34, 469-474 (1978).
- 2
Hardeo Sahai and Anwer Khurshid, Statistics in Epidemiology, CRC Press LLC, Boca Raton, FL, USA (1996).
Examples
>>> from scipy.stats.contingency import relative_risk >>> result = relative_risk(exposed_cases=10, exposed_total=75, ... control_cases=12, control_total=225) >>> result.relative_risk 2.5 >>> result.confidence_interval() ConfidenceInterval(low=1.1261564003469628, high=5.549850800541033)