scipy.special.roots_chebyc#
- scipy.special.roots_chebyc(n, mu=False)[source]#
Gauss-Chebyshev (first kind) quadrature.
Compute the sample points and weights for Gauss-Chebyshev quadrature. The sample points are the roots of the nth degree Chebyshev polynomial of the first kind, \(C_n(x)\). These sample points and weights correctly integrate polynomials of degree \(2n - 1\) or less over the interval \([-2, 2]\) with weight function \(w(x) = 1 / \sqrt{1 - (x/2)^2}\). See 22.2.6 in [AS] for more details.
- Parameters
- nint
quadrature order
- mubool, optional
If True, return the sum of the weights, optional.
- Returns
- xndarray
Sample points
- wndarray
Weights
- mufloat
Sum of the weights
References
- AS
Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.