scipy.special.fresnel#
- scipy.special.fresnel(z, out=None) = <ufunc 'fresnel'>#
Fresnel integrals.
The Fresnel integrals are defined as
\[\begin{split}S(z) &= \int_0^z \sin(\pi t^2 /2) dt \\ C(z) &= \int_0^z \cos(\pi t^2 /2) dt.\end{split}\]See [dlmf] for details.
- Parameters
- zarray_like
Real or complex valued argument
- out2-tuple of ndarrays, optional
Optional output arrays for the function results
- Returns
- S, C2-tuple of scalar or ndarray
Values of the Fresnel integrals
See also
fresnel_zeros
zeros of the Fresnel integrals
References
- dlmf
NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/7.2#iii
Examples
>>> import scipy.special as sc
As z goes to infinity along the real axis, S and C converge to 0.5.
>>> S, C = sc.fresnel([0.1, 1, 10, 100, np.inf]) >>> S array([0.00052359, 0.43825915, 0.46816998, 0.4968169 , 0.5 ]) >>> C array([0.09999753, 0.7798934 , 0.49989869, 0.4999999 , 0.5 ])
They are related to the error function
erf
.>>> z = np.array([1, 2, 3, 4]) >>> zeta = 0.5 * np.sqrt(np.pi) * (1 - 1j) * z >>> S, C = sc.fresnel(z) >>> C + 1j*S array([0.7798934 +0.43825915j, 0.48825341+0.34341568j, 0.60572079+0.496313j , 0.49842603+0.42051575j]) >>> 0.5 * (1 + 1j) * sc.erf(zeta) array([0.7798934 +0.43825915j, 0.48825341+0.34341568j, 0.60572079+0.496313j , 0.49842603+0.42051575j])