scipy.special.eval_laguerre#
- scipy.special.eval_laguerre(n, x, out=None) = <ufunc 'eval_laguerre'>#
Evaluate Laguerre polynomial at a point.
The Laguerre polynomials can be defined via the confluent hypergeometric function \({}_1F_1\) as
\[L_n(x) = {}_1F_1(-n, 1, x).\]See 22.5.16 and 22.5.54 in [AS] for details. When \(n\) is an integer the result is a polynomial of degree \(n\).
- Parameters
- narray_like
Degree of the polynomial. If not an integer the result is determined via the relation to the confluent hypergeometric function.
- xarray_like
Points at which to evaluate the Laguerre polynomial
- outndarray, optional
Optional output array for the function values
- Returns
- Lscalar or ndarray
Values of the Laguerre polynomial
See also
roots_laguerre
roots and quadrature weights of Laguerre polynomials
laguerre
Laguerre polynomial object
numpy.polynomial.laguerre.Laguerre
Laguerre series
eval_genlaguerre
evaluate generalized Laguerre polynomials
References
- AS
Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.