scipy.special.ellipeinc#
- scipy.special.ellipeinc(phi, m, out=None) = <ufunc 'ellipeinc'>#
Incomplete elliptic integral of the second kind
This function is defined as
\[E(\phi, m) = \int_0^{\phi} [1 - m \sin(t)^2]^{1/2} dt\]- Parameters
- phiarray_like
amplitude of the elliptic integral.
- marray_like
parameter of the elliptic integral.
- outndarray, optional
Optional output array for the function values
- Returns
- Escalar or ndarray
Value of the elliptic integral.
See also
ellipkm1
Complete elliptic integral of the first kind, near m = 1
ellipk
Complete elliptic integral of the first kind
ellipkinc
Incomplete elliptic integral of the first kind
ellipe
Complete elliptic integral of the second kind
elliprd
Symmetric elliptic integral of the second kind.
elliprf
Completely-symmetric elliptic integral of the first kind.
elliprg
Completely-symmetric elliptic integral of the second kind.
Notes
Wrapper for the Cephes [1] routine ellie.
Computation uses arithmetic-geometric means algorithm.
The parameterization in terms of \(m\) follows that of section 17.2 in [2]. Other parameterizations in terms of the complementary parameter \(1 - m\), modular angle \(\sin^2(\alpha) = m\), or modulus \(k^2 = m\) are also used, so be careful that you choose the correct parameter.
The Legendre E incomplete integral can be related to combinations of Carlson’s symmetric integrals R_D, R_F, and R_G in multiple ways [3]. For example, with \(c = \csc^2\phi\),
\[E(\phi, m) = R_F(c-1, c-k^2, c) - \frac{1}{3} k^2 R_D(c-1, c-k^2, c) .\]References
- 1
Cephes Mathematical Functions Library, http://www.netlib.org/cephes/
- 2
Milton Abramowitz and Irene A. Stegun, eds. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover, 1972.
- 3
NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.28 of 2020-09-15. See Sec. 19.25(i) https://dlmf.nist.gov/19.25#i