scipy.special.bdtrc#

scipy.special.bdtrc(k, n, p, out=None) = <ufunc 'bdtrc'>#

Binomial distribution survival function.

Sum of the terms floor(k) + 1 through n of the binomial probability density,

\[\mathrm{bdtrc}(k, n, p) = \sum_{j=\lfloor k \rfloor +1}^n {{n}\choose{j}} p^j (1-p)^{n-j}\]
Parameters
karray_like

Number of successes (double), rounded down to nearest integer.

narray_like

Number of events (int)

parray_like

Probability of success in a single event.

outndarray, optional

Optional output array for the function values

Returns
yscalar or ndarray

Probability of floor(k) + 1 or more successes in n independent events with success probabilities of p.

See also

bdtr
betainc

Notes

The terms are not summed directly; instead the regularized incomplete beta function is employed, according to the formula,

\[\mathrm{bdtrc}(k, n, p) = I_{p}(\lfloor k \rfloor + 1, n - \lfloor k \rfloor).\]

Wrapper for the Cephes [1] routine bdtrc.

References

1

Cephes Mathematical Functions Library, http://www.netlib.org/cephes/