scipy.ndimage.binary_dilation#
- scipy.ndimage.binary_dilation(input, structure=None, iterations=1, mask=None, output=None, border_value=0, origin=0, brute_force=False)[source]#
Multidimensional binary dilation with the given structuring element.
- Parameters
- inputarray_like
Binary array_like to be dilated. Non-zero (True) elements form the subset to be dilated.
- structurearray_like, optional
Structuring element used for the dilation. Non-zero elements are considered True. If no structuring element is provided an element is generated with a square connectivity equal to one.
- iterationsint, optional
The dilation is repeated iterations times (one, by default). If iterations is less than 1, the dilation is repeated until the result does not change anymore. Only an integer of iterations is accepted.
- maskarray_like, optional
If a mask is given, only those elements with a True value at the corresponding mask element are modified at each iteration.
- outputndarray, optional
Array of the same shape as input, into which the output is placed. By default, a new array is created.
- border_valueint (cast to 0 or 1), optional
Value at the border in the output array.
- originint or tuple of ints, optional
Placement of the filter, by default 0.
- brute_forceboolean, optional
Memory condition: if False, only the pixels whose value was changed in the last iteration are tracked as candidates to be updated (dilated) in the current iteration; if True all pixels are considered as candidates for dilation, regardless of what happened in the previous iteration. False by default.
- Returns
- binary_dilationndarray of bools
Dilation of the input by the structuring element.
Notes
Dilation [1] is a mathematical morphology operation [2] that uses a structuring element for expanding the shapes in an image. The binary dilation of an image by a structuring element is the locus of the points covered by the structuring element, when its center lies within the non-zero points of the image.
References
Examples
>>> from scipy import ndimage >>> a = np.zeros((5, 5)) >>> a[2, 2] = 1 >>> a array([[ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.], [ 0., 0., 1., 0., 0.], [ 0., 0., 0., 0., 0.], [ 0., 0., 0., 0., 0.]]) >>> ndimage.binary_dilation(a) array([[False, False, False, False, False], [False, False, True, False, False], [False, True, True, True, False], [False, False, True, False, False], [False, False, False, False, False]], dtype=bool) >>> ndimage.binary_dilation(a).astype(a.dtype) array([[ 0., 0., 0., 0., 0.], [ 0., 0., 1., 0., 0.], [ 0., 1., 1., 1., 0.], [ 0., 0., 1., 0., 0.], [ 0., 0., 0., 0., 0.]]) >>> # 3x3 structuring element with connectivity 1, used by default >>> struct1 = ndimage.generate_binary_structure(2, 1) >>> struct1 array([[False, True, False], [ True, True, True], [False, True, False]], dtype=bool) >>> # 3x3 structuring element with connectivity 2 >>> struct2 = ndimage.generate_binary_structure(2, 2) >>> struct2 array([[ True, True, True], [ True, True, True], [ True, True, True]], dtype=bool) >>> ndimage.binary_dilation(a, structure=struct1).astype(a.dtype) array([[ 0., 0., 0., 0., 0.], [ 0., 0., 1., 0., 0.], [ 0., 1., 1., 1., 0.], [ 0., 0., 1., 0., 0.], [ 0., 0., 0., 0., 0.]]) >>> ndimage.binary_dilation(a, structure=struct2).astype(a.dtype) array([[ 0., 0., 0., 0., 0.], [ 0., 1., 1., 1., 0.], [ 0., 1., 1., 1., 0.], [ 0., 1., 1., 1., 0.], [ 0., 0., 0., 0., 0.]]) >>> ndimage.binary_dilation(a, structure=struct1,\ ... iterations=2).astype(a.dtype) array([[ 0., 0., 1., 0., 0.], [ 0., 1., 1., 1., 0.], [ 1., 1., 1., 1., 1.], [ 0., 1., 1., 1., 0.], [ 0., 0., 1., 0., 0.]])