scipy.spatial.distance.sokalsneath#
- scipy.spatial.distance.sokalsneath(u, v, w=None)[source]#
- Compute the Sokal-Sneath dissimilarity between two boolean 1-D arrays. - The Sokal-Sneath dissimilarity between u and v, \[\frac{R} {c_{TT} + R}\]- where \(c_{ij}\) is the number of occurrences of \(\mathtt{u[k]} = i\) and \(\mathtt{v[k]} = j\) for \(k < n\) and \(R = 2(c_{TF} + c_{FT})\). - Parameters
- u(N,) array_like, bool
- Input array. 
- v(N,) array_like, bool
- Input array. 
- w(N,) array_like, optional
- The weights for each value in u and v. Default is None, which gives each value a weight of 1.0 
 
- Returns
- sokalsneathdouble
- The Sokal-Sneath dissimilarity between vectors u and v. 
 
 - Examples - >>> from scipy.spatial import distance >>> distance.sokalsneath([1, 0, 0], [0, 1, 0]) 1.0 >>> distance.sokalsneath([1, 0, 0], [1, 1, 0]) 0.66666666666666663 >>> distance.sokalsneath([1, 0, 0], [2, 1, 0]) 0.0 >>> distance.sokalsneath([1, 0, 0], [3, 1, 0]) -2.0